凸优化学习笔记3

Chapter 4 Convex optimization problems

《Convex Optimization》一书一直到第4章才算正式处理凸优化问题,第2章和第3章分别介绍了凸集和凸函数的一些知识,而凸优化问题的组成要素就是凸集和凸函数,重点是面对自己专业领域的一个优化问题,如何想办法将其转换为凸优化问题。

4.1 Optimization problems

优化问题的一般描述如下:
m i n i m i z e f 0 ( x ) s u b j e c t    t o        f i ( x ) ≤ 0 , i = 1 , … , m h i ( x ) = 0 , i = 1 , … , p \begin{aligned} \mathrm{minimize}\quad &f_0(x)\\ \mathrm{subject\;to}\;\;\;&f_i(x)\leq 0,\quad i=1,\ldots,m\\ &h_i(x)=0,\quad i=1,\ldots,p \end{aligned} minimizesubjecttof0(x)fi(x)0,i=1,,mhi(x)=0,i=1,,p

  • 相关定义:
    • x ∈ R n x\in\mathbb{R}^n xRn: optimization variable
    • f 0 : R n → R f_0:\mathbb{R}^n\rightarrow\mathbb{R} f0:RnR: objective function/cost function
    • f i ( x ) ≤ 0 f_i(x)\leq 0 fi(x)0: inequality constraints; f i ( x ) : R n → R f_i(x):\mathbb{R}^n\rightarrow\mathbb{R} fi(x):RnR: inequality constraint functions
    • h i ( x ) = 0 h_i(x)=0 hi(x)=0: equality constraints; h i ( x ) : R n → R h_i(x):\mathbb{R}^n\rightarrow\mathbb{R} hi(x):RnR: equality constraint functions
    • D = ⋂ i = 0 m d o m f i ∩ ⋂ i = 1 p d o m h i \mathcal{D}=\displaystyle{\bigcap_{i=0}^m}\mathbf{dom}f_i\cap\displaystyle{\bigcap_{i=1}^p}\mathbf{dom}h_i D=i=0mdomfii=1pdomhi: domain of the optimization problem
    • x ∈ D x\in\mathcal{D} xD, f i ( x ) ≤ 0 , i = 1 , … , m f_i(x)\leq 0,i=1,\ldots,m fi(x)0,i=1,,m, h i ( x ) = 0 , i = 1 , … , p h_i(x)=0,i=1,\ldots,p hi(x)=0,i=1,,p: feasible point; the set of all feasible points: feasible set/constrained set
    • p ∗ = inf ⁡ { f 0 ( x ) ∣ f i ( x ) ≤ 0 , i = 1 , … , m , h i ( x ) = 0 , i = 1 , … , p } p^*=\inf\{f_0(x)\vert f_i(x)\leq 0,i=1,\ldots,m,h_i(x)=0, i=1,\ldots,p\} p=inf{f0(x)fi(x)0,i=1,,m,hi(x)=0,i=1,,p}: optimal value
    • x ∗ x^* x is feasible and f 0 ( x ∗ ) = p ∗ f_0(x^*)=p^* f0(x)=p: optimal point; X o p t = { x ∣ f i ( x ) ≤ 0 , i = 1 , … , m , h i ( x ) = 0 , i = 1 , … , p , f 0 ( x ) = p ∗ } X_\mathrm{opt}=\{x\vert f_i(x)\leq 0,i=1,\ldots,m,h_i(x)=0,i=1,\ldots,p,f_0(x)=p^*\} Xopt={xfi(x)0,i=1,,m,hi(x)=0,i=1,,p,f0(x)=p}: optimal set
    • x x x is feasible with f 0 ( x ) ≤ p ∗ + ϵ f_0(x)\leq p^*+\epsilon f0(x)p+ϵ, ϵ > 0 \epsilon>0 ϵ>0: ϵ \epsilon ϵ-suboptimal; the set of all ϵ \epsilon ϵ-suboptimal points: ϵ \epsilon ϵ-suboptimal set
    • x x x is feasible, R > 0 R>0 R>0, f 0 ( x ) = inf ⁡ { f 0 ( z ) ∣ f i ( z ) ≤ 0 , i = 1 , … , m , h i ( z ) = 0 , i = 1 , … , p , ∥ z − x ∥ ≤ R } f_0(x)=\inf\{f_0(z)\vert f_i(z)\leq 0,i=1,\ldots,m,h_i(z)=0,i=1,\ldots,p,\Vert z-x\Vert\leq R\} f0(x)=inf{f0(z)fi(z)0,i=1,,m,hi(z)=0,i=1,,p,zxR}: locally optimal
4.2 Convex optimization

凸优化问题的一般描述如下:
m i n i m i z e f 0 ( x ) s u b j e c t    t o        f i ( x ) ≤ 0 , i = 1 , … , m a i T x = b i , i = 1 , … , p \begin{aligned} \mathrm{minimize}\quad &f_0(x)\\ \mathrm{subject\;to}\;\;\;&f_i(x)\leq 0,\quad i=1,\ldots,m\\ &a_i^\mathrm{T}x=b_i,\quad i=1,\ldots,p \end{aligned} minimizesubjecttof0(x)fi(x)0,i=1,,maiTx=bi,i=1,,p

其中, f 0 , … , f m f_0,\ldots,f_m f0,,fm为凸函数,

  • any locally point is also globally optimal
  • if f 0 f_0 f0 is differentiable, X X X denotes the feasible set, then x x x is optimal ⇔ \Leftrightarrow x ∈ X x\in X xX, ∇ f 0 T ( x ) ( y − x ) ≥ 0 \nabla f_0^\mathrm{T}(x)(y-x)\geq 0 f0T(x)(yx)0 for all y ∈ X y\in X yX; if m = p = 0 m=p=0 m=p=0, then ∇ f 0 ( x ) = 0 \nabla f_0(x)=0 f0(x)=0
  • 拟凸优化: f 0 f_0 f0 is quasiconvex
    • if f 0 f_0 f0 is differentiable, x ∈ X x\in X xX, ∇ f 0 T ( x ) ( y − x ) > 0 \nabla f_0^\mathrm{T}(x)(y-x)>0 f0T(x)(yx)>0 for all y ∈ X \ { x } ⇒ y\in X\backslash\{x\}\Rightarrow yX\{x} x x x is optimal
    • 利用 f 0 ( x ) ⇔ ϕ t ( x ) ≤ 0 f_0(x)\Leftrightarrow\phi_t(x)\leq 0 f0(x)ϕt(x)0转为convex feasibility problem
4.3 Linear optimization problems

general form
m i n i m i z e c T x + d s u b j e c t    t o        G x ⪯ h A x = b \begin{aligned} \mathrm{minimize}\quad &c^\mathrm{T}x+d\\ \mathrm{subject\;to}\;\;\;&Gx\preceq h\\ &Ax=b \end{aligned} minimizesubjecttocTx+dGxhAx=b

其中, G ∈ R m × n G\in\mathbb{R}^{m\times n} GRm×n A ∈ R p × n A\in\mathbb{R}^{p\times n} ARp×n

standard form
m i n i m i z e c T x s u b j e c t    t o        A x = b x ⪰ 0 \begin{aligned} \mathrm{minimize}\quad &c^\mathrm{T}x\\ \mathrm{subject\;to}\;\;\;&Ax=b\\ &x\succeq 0 \end{aligned} minimizesubjecttocTxAx=bx0
general formstandard form

  • introduce slack variables s i s_i si:
    m i n i m i z e c T x + d s u b j e c t    t o        G x + s = h A x = b s ⪰ 0 \begin{aligned} \mathrm{minimize}\quad &c^\mathrm{T}x+d\\ \mathrm{subject\;to}\;\;\;&Gx+s= h\\ &Ax=b\\ &s\succeq 0 \end{aligned} minimizesubjecttocTx+dGx+s=hAx=bs0

  • x = x + − x − x=x^+-x^- x=x+x x + , x − ⪰ 0 x^+,x^-\succeq 0 x+,x0:
    minimize c T x + − c T x − + d subject to        G x + − G x − + s = h A x + − A x − = b x + ⪰ 0 ,   x − ⪰ 0 ,   s ⪰ 0 \begin{aligned} \text{minimize}\quad &c^\mathrm{T}x^+-c^\mathrm{T}x^-+d\\ \text{subject to}\;\;\;&Gx^+-Gx^-+s= h\\ &Ax^+-Ax^-=b\\ &x^+\succeq 0,\ x^-\succeq 0,\ s\succeq 0 \end{aligned} minimizesubject tocTx+cTx+dGx+Gx+s=hAx+Ax=bx+0, x0, s0

4.4 Quadratic optimization problems

quadratic program (QP)
minimize 1 2 x T P x + q T x + r subject to        G x ⪯ h A x = b \begin{aligned} \text{minimize}\quad &\frac{1}{2}x^\mathrm{T}Px+q^\mathrm{T}x+r\\ \text{subject to}\;\;\;&Gx\preceq h\\ &Ax=b \end{aligned} minimizesubject to21xTPx+qTx+rGxhAx=b

其中, P ∈ S + n P\in\mathbb{S}_+^n PS+n

quadratically constrained quadratic program (QCQP)
minimize 1 2 x T P 0 x + q 0 T x + r 0 subject to        1 2 x T P i x + q i T x + r i ≤ 0 , i = 1 , … , m A x = b \begin{aligned} \text{minimize}\quad &\frac{1}{2}x^\mathrm{T}P_0x+q_0^\mathrm{T}x+r_0\\ \text{subject to}\;\;\;&\frac{1}{2}x^\mathrm{T}P_ix+q_i^\mathrm{T}x+r_i\leq 0,\quad i=1,\ldots,m\\ &Ax=b \end{aligned} minimizesubject to21xTP0x+q0Tx+r021xTPix+qiTx+ri0,i=1,,mAx=b

其中, P i ∈ S + n P_i\in\mathbb{S}_+^n PiS+n i = 0 , 1 , … , m i=0,1,\ldots,m i=0,1,,m

second-order cone program (SOCP)
minimize f T x subject to        ∥ A i x + b i ∥ 2 ≤ c i T x + d i , i = 1 , … , m F x = g \begin{aligned} \text{minimize}\quad &f^\mathrm{T}x\\ \text{subject to}\;\;\;&\Vert A_ix+b_i\Vert_2\leq c_i^\mathrm{T}x+d_i,\quad i=1,\ldots,m\\ &Fx=g \end{aligned} minimizesubject tofTxAix+bi2ciTx+di,i=1,,mFx=g

4.5 Geometric programming
  • monomial function: f ( x ) = c x 1 a 1 x 2 a 2 ⋯ x n a n f(x)=cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n} f(x)=cx1a1x2a2xnan c > 0 c>0 c>0 a i ∈ R a_i\in\mathbb{R} aiR dom f = R + + n \textbf{dom}f=\mathbb{R}_{++}^n domf=R++n

  • posynomial function: f ( x ) = ∑ k = 1 K c k x 1 a 1 k x 2 a 2 k ⋯ x n a n k f(x)=\displaystyle\sum_{k=1}^Kc_kx_1^{a_{1k}}x_2^{a_{2k}}\cdots x_n^{a_{nk}} f(x)=k=1Kckx1a1kx2a2kxnank c k > 0 c_k>0 ck>0

  • geometric program (GP)
    minimize f 0 ( x ) subject to        f i ( x ) ≤ 1 , i = 1 , … , m h i ( x ) = 1 , i = 1 , … , p \begin{aligned} \text{minimize}\quad &f_0(x)\\ \text{subject to}\;\;\;&f_i(x)\leq 1,\quad i=1,\ldots,m\\ &h_i(x)=1,\quad i=1,\ldots,p \end{aligned} minimizesubject tof0(x)fi(x)1,i=1,,mhi(x)=1,i=1,,p

其中, f 0 , … , f m f_0,\ldots,f_m f0,,fm为posynomials, h 1 , … , h p h_1,\ldots,h_p h1,,hp为monomials。通过取对数和变量替换可转换为凸优化问题。

4.6节介绍的Generalized inequality constraints和4.7节介绍的Vector optimization等需要用到的时候再详细研究。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值