YOLOv8改进 | 主干网络 | ⭐重写星辰Rewrite the Stars⭐【CVPR2024】

 秋招面试专栏推荐深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有70+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转


最近的研究关注到了在网络设计中尚未充分挖掘的“星运算”(逐元素乘法)的潜力。尽管直观的解释有很多,但其应用的基础原理仍然在很大程度上未被探索。我们的研究试图揭示星运算的能力,它能够在不扩大网络的情况下,将输入映射到高维、非线性的特征空间中,类似于核技巧。我们进一步引入了StarNet,这是一个简单但强大的原型,它在紧凑的网络结构和高效的预算下展现了令人印象深刻的性能和低延迟就像天空中的星星一样,星运算看似不起眼,却蕴含着广阔的潜力宇宙。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址YOLOv8改进——更新各种有效涨点方法——点击即可跳转

目录

1.原理 

2. 将starNet添加到yolov8网络中

2.1 starNet代码实现

2.2 更改init.py文件

2.3 添加y

### Starnet 网络结构的代码实现 #### 关于 StarNet 的背景 StarNet 是一种高效的超分辨率网络架构,其设计基于轻量化模型的理念。它采用了分阶段的层次结构,并通过卷积层完成下采样操作[^2]。为了提高计算效率,该网络将 Layer Normalization 替换为 Batch Normalization 并将其置于深度卷积之后,在推理过程中能够更好地融合参数。 以下是有关 StarNet 实现的一些资源和方法: --- #### 基于 PyTorch 的 StarNet 实现 虽然目前官方并未提供 StarNet 的开源代码库,但可以根据论文描述自行实现或参考类似的超分辨率项目进行调整。以下是一个简单的 StarNet 构建框架示例(PyTorch 版本): ```python import torch.nn as nn import torch class DemoBlock(nn.Module): def __init__(self, in_channels, out_channels, expansion_factor=4): super(DemoBlock, self).__init__() hidden_dim = int(in_channels * expansion_factor) self.depthwise_conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1, groups=in_channels ) self.pointwise_conv = nn.Conv2d(hidden_dim, out_channels, kernel_size=1) self.bn = nn.BatchNorm2d(out_channels) self.relu6 = nn.ReLU6(inplace=True) def forward(self, x): x = self.depthwise_conv(x) x = self.bn(x) x = self.relu6(x) x = self.pointwise_conv(x) return x class StarNet(nn.Module): def __init__(self, num_blocks=[2, 4, 8, 16], input_channel=3, embedding_channel=64): super(StarNet, self).__init__() layers = [] current_channel = embedding_channel for i, block_num in enumerate(num_blocks): next_channel = current_channel * 2 if i != 0 else current_channel for _ in range(block_num): layers.append(DemoBlock(current_channel, next_channel)) current_channel = next_channel self.network = nn.Sequential(*layers) def forward(self, x): return self.network(x) if __name__ == "__main__": model = StarNet() print(model) ``` 上述代码实现了 StarNet 中提到的核心模块 `DemoBlock` 和整体网络结构。注意,这只是一个基础版本,实际应用中可能需要进一步优化以匹配性能需求。 --- #### TensorFlow/Keras 的 StarNet 实现思路 对于 TensorFlow 用户而言,可以通过 Keras API 来快速搭建 StarNet 模型。下面展示了一个简化版的实现逻辑: ```python from tensorflow.keras import Model, Input from tensorflow.keras.layers import Conv2D, DepthwiseConv2D, ReLU, BatchNormalization def demo_block(inputs, filters, expansion_factor=4): expanded_filters = inputs.shape[-1] * expansion_factor depthwise_layer = DepthwiseConv2D(kernel_size=(3, 3), padding='same')(inputs) bn_layer = BatchNormalization()(depthwise_layer) relu_layer = ReLU(max_value=6)(bn_layer) pointwise_layer = Conv2D(filters=filters, kernel_size=(1, 1))(relu_layer) return pointwise_layer def build_starnet(input_shape=(None, None, 3)): inputs = Input(shape=input_shape) x = Conv2D(64, (3, 3), padding="same")(inputs) # Initial Embedding Channel stages = [2, 4, 8, 16] channels = [64, 128, 256, 512] for stage_idx, blocks_per_stage in enumerate(stages): for _ in range(blocks_per_stage): x = demo_block(x, channels[stage_idx]) outputs = Conv2D(3, (3, 3), padding="same", activation="sigmoid")(x) return Model(inputs, outputs) model = build_starnet((128, 128, 3)) # Example with fixed size model.summary() ``` 此代码片段定义了 `demo_block` 函数以及完整的 StarNet 结构。用户可根据具体任务调整输入尺寸和其他超参数。 --- #### 可能存在的第三方实现 尽管当前未发现完全公开的 StarNet 官方代码仓库,但在 GitHub 上存在许多与之相似的超分辨率项目可供借鉴。例如: - **EDSR**: Enhanced Deep Residual Network for Single Image Super-Resolution[^3]。 - **RCAN**: Residual Channel Attention Networks for Image Super-Resolution。 这些项目的源码通常位于如下链接形式的存储库中: - https://github.com/search?q=image+super-resolution&type=repositories - 或者其他社区贡献者的个人页面。 如果希望找到更接近原始设计的实现,建议关注作者所在机构发布的最新动态或者联系研究团队获取更多信息。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值