凸优化学习笔记4

Chapter 5 Duality 主要是讲优化问题的对偶,是整本书理论部分的核心。

5.1 The Lagrange dual function

对于一般优化问题(primal problem)
minimize f 0 ( x ) subject to        f i ( x ) ≤ 0 , i = 1 , … , m h i ( x ) = 0 , i = 1 , … , p \begin{aligned} \text{minimize}\quad &f_0(x)\\ \text{subject to}\;\;\;&f_i(x)\leq 0,\quad i=1,\ldots,m\\ &h_i(x)=0,\quad i=1,\ldots,p \end{aligned} minimizesubject tof0(x)fi(x)0,i=1,,mhi(x)=0,i=1,,p

domain D = ⋂ i = 0 m d o m f ∩ ⋂ i = 1 p d o m h i \mathcal{D}=\bigcap_{i=0}^m\mathbf{dom}f\cap\bigcap_{i=1}^p\mathbf{dom}h_i D=i=0mdomfi=1pdomhi,optimal value p ∗ p^* p,相应的Lagrange为
L ( x , λ , ν ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p ν i h i ( x ) L(x,\lambda,\nu)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^p\nu_ih_i(x) L(x,λ,ν)=f0(x)+i=1mλifi(x)+i=1pνihi(x)

d o m L = D × R m × R p \mathbf{dom}L=\mathcal{D}\times\mathbb{R}^m\times\mathbb{R}^p domL=D×Rm×Rp λ i \lambda_i λi ν i \nu_i νi称为Lagrange multiplier,Lagrange dual function为
g ( λ , ν ) = inf ⁡ x ∈ D L ( x , λ , ν ) = inf ⁡ x ∈ D ( f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p ν i h i ( x ) ) g(\lambda,\nu)=\inf_{x\in\mathcal{D}}L(x,\lambda,\nu)=\inf_{x\in\mathcal{D}}\left(f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^p\nu_ih_i(x)\right) g(λ,ν)=xDinfL(x,λ,ν)=xDinf(f0(x)+i=1mλifi(x)+i=1pνihi(x))

  • g ( λ , ν ) g(\lambda,\nu) g(λ,ν) is concave
  • for any λ ⪰ 0 \lambda\succeq 0 λ0 and any ν \nu ν, g ( λ , ν ) ≤ p ∗ g(\lambda,\nu)\leq p^* g(λ,ν)p
5.2 The Lagrange dual problem

maximize g ( λ , ν ) subject to        λ ⪰ 0 \begin{aligned} \text{maximize}\quad &g(\lambda,\nu)\\ \text{subject to}\;\;\;&\lambda\succeq 0 \end{aligned} maximizesubject tog(λ,ν)λ0

dual optimal ( λ ∗ , ν ∗ ) (\lambda^*,\nu^*) (λ,ν),optimal value d ∗ d^* d

  • d ∗ ≤ p ∗ d^*\leq p^* dp: weak duality

  • if d ∗ = p ∗ d^*=p^* d=p, then strong duality holds

  • Slater’s condition for convex problem: There exists an x ∈ r e l i n t D x\in\mathbf{relint}\mathcal{D} xrelintD such that
    f i ( x ) < 0 , i = 1 , … , m , A x = b f_i(x)<0,\quad i=1,\ldots,m,\quad Ax=b fi(x)<0,i=1,,m,Ax=b

    then strong duality holds

    • if f 1 , … , f k f_1,\ldots,f_k f1,,fk are affine, then Slater’s condition is: there exists an x ∈ r e l i n t D x\in\mathbf{relint}\mathcal{D} xrelintD such that
      f i ( x ) ≤ 0 ,   i = 1 , … , k ,   f i ( x ) < 0 ,   i = k + 1 , … , m ,   A x = b f_i(x)\leq 0,\ i=1,\ldots,k,\ f_i(x)<0,\ i=k+1,\ldots,m,\ Ax=b fi(x)0, i=1,,k, fi(x)<0, i=k+1,,m, Ax=b

simple equivalent reformulations of a problem can lead to very different dual problems.

5.3和5.4是对Lagrange对偶的几何和鞍点解释。

5.5 Optimality conditions

主要是KKT条件

  • for any optimization problem with differentiable objective and constraint functions for which strong duality obtains, any pair of primal and dual optimal points must satisfy
    f i ( x ∗ ) ≤ 0 ,   i = 1 , … , m h i ( x ∗ ) = 0 ,   i = 1 , … , p λ i ∗ ≥ 0 ,   i = 1 , … , m λ i ∗ f i ( x ∗ ) = 0 ,   i = 1 , … , m ∇ f 0 ( x ∗ ) + ∑ i = 1 m λ i ∗ ∇ f i ( x ∗ ) + ∑ i = 1 p ν i ∗ ∇ h i ( x ∗ ) = 0 \begin{aligned} f_i(x^*)&\leq 0,\ i=1,\ldots,m\\ h_i(x^*)&=0,\ i=1,\ldots,p\\ \lambda_i^*&\geq 0,\ i=1,\ldots,m\\ \lambda_i^*f_i(x^*)&=0,\ i=1,\ldots,m\\ \nabla f_0(x^*)+\sum_{i=1}^m\lambda_i^*\nabla f_i(x^*)+\sum_{i=1}^p\nu_i^*\nabla h_i(x^*)&=0 \end{aligned} fi(x)hi(x)λiλifi(x)f0(x)+i=1mλifi(x)+i=1pνihi(x)0, i=1,,m=0, i=1,,p0, i=1,,m=0, i=1,,m=0

  • when the primal problem is convex, the KKT conditions are also sufficient for the points to be primal and dual optimal.

5.6 Perturbation and sensitivity analysis

the perturbed problem
minimize f 0 ( x ) subject to        f i ( x ) ≤ u i , i = 1 , … , m h i ( x ) = v i , i = 1 , … , p \begin{aligned} \text{minimize}\quad &f_0(x)\\ \text{subject to}\;\;\;&f_i(x)\leq u_i,\quad i=1,\ldots,m\\ &h_i(x)=v_i,\quad i=1,\ldots,p \end{aligned} minimizesubject tof0(x)fi(x)ui,i=1,,mhi(x)=vi,i=1,,p

  • p ∗ ( u , v ) = inf ⁡ { f 0 ( x ) ∣ ∃ x ∈ D , f i ( x ) ≤ u i , i = 1 , … , m , h i ( x ) = v i , i = 1 , … , p } p^*(u,v)=\inf\{f_0(x)\vert \exists x\in\mathcal{D},f_i(x)\leq u_i,i=1,\ldots,m,h_i(x)=v_i,i=1,\ldots,p\} p(u,v)=inf{f0(x)xD,fi(x)ui,i=1,,m,hi(x)=vi,i=1,,p}
  • p ∗ ( 0 , 0 ) = g ( λ ∗ , ν ∗ ) ≤ f 0 ( x ) + λ ∗ T u + ν ∗ T v ⇒ p^*(0,0)=g(\lambda^*,\nu^*)\leq f_0(x)+\lambda^{*\mathrm{T}}u+\nu^{*\mathrm{T}}v\Rightarrow p(0,0)=g(λ,ν)f0(x)+λTu+νTv p ∗ ( u , v ) ≥ p ∗ ( 0 , 0 ) − λ ∗ T u − ν ∗ T v p^*(u,v)\geq p^*(0,0)-\lambda^{*\mathrm{T}}u-\nu^{*\mathrm{T}}v p(u,v)p(0,0)λTuνTv

5.7是examples, 5.8是约束可行性问题,5.9研究了generalized inequalities描述的对偶问题。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值