奈奎斯特-香农采样定理的理解(结合cos(8.5t)和傅里叶变换)

采样定理,通常被称为奈奎斯特-香农采样定理,是信号处理中的一个基本原则。它解释了如何从连续信号中采样以便在后续能完全重构原始信号。以下是该定理的核心要点:

  • 采样定理的陈述
  • 为了从其样本中无失真地重构一个连续时间信号,采样频率(采样率)必须至少是信号中最高频率成分的两倍。这个最低的采样频率被称为“奈奎斯特频率”。
  • 为什么需要奈奎斯特频率
  • 如果采样频率低于信号最高频率的两倍,就会发生**“混叠”现象**。混叠是指高频信号在低采样率下被错误地解释为低频信号,导致原始信号的失真。
  • 实际应用
  • 在实际应用中,通常会选择略高于理论奈奎斯特频率的采样率,以确保信号能被准确重构,特别是当信号接近最高频率成分时。
  • 例子
  • 假设一个信号包含的最高频率成分为 3000 Hz,那么根据采样定理,采样频率应至少为 6000 Hz(或6 kHz)。在实践中,可能会选择更高的采样率,例如 8000 Hz,来确保信号的准确重构。

实践一下

假设我们有个时域的连续信号cos(8.5t),接下来要设置一个时间1秒,对它进行该时间内的信号采样,然后对其进行傅里叶变换到频域,频域得到的结果应该是在8.5hz有明显的突变。按照采样定理,我们应该设置大于8.52的采样频率,我们先设置1个低于8.52的采样频率10,反变换前后结果如下:
在这里插入图片描述在这里插入图片描述频域结果在2HZ,与8.5hz完全不符,说明采样频率过低会导致频域结果完全失真。
再设置1个正好等于8.52的采样频率17,反变换前后结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法小菜鸟moon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值