“AI界拼多多”发布Deepseek R1,AI顿悟时刻出现

图源:大模型之家

大模型价格,这回真让国产大模型打下来了!

就在昨晚,距离DeepSeek APP上线十天左右的时间,DeepSeek终于在官宣了DeepSeek-R1发布,并同步开源模型权重。这一消息在AI圈引来众多网友围观,最令人震惊的是,DeepSeek-R1 API服务定价为每百万输入tokens 1元(缓存命中)/ 4元(缓存未命中),每百万输出tokens 16元,远低于ChatGPT的定价。

OpenAI的一位创始团队成员曾称,以前达到DeepSeek3.0版本这种级别能力通常需16000个GPU,而DeepSeek只用2000个GPU,计算量减少了11倍,这证明AI算法还有很大优化空间。

关于DeepSeek的定价也引发了很多争议,尤其在外国网友看来,由于众所周知的原因,美国封锁AI芯片流向中国,而中国AI怎么可能做到以低成本的算力达到高标准的效果?

针对DeepSeek发布的论文,英伟达高级研究科学家Jim Fan在X上公开表示,我们生活在这样一个时代:由非美国公司保持OpenAI 最初的使命——做真正开放的前沿研究、为所有人赋能。这似乎讲不通,但戏剧性的往往最有可能发生。

01

R1发布即上线,DeepSeek成为“AI界拼多多”

而本次DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩OpenAI o1正式版。

“DeepSeek 官网与 App 即日起同步更新上线。”这波发布即上线,也是可以看出DeepSeek包容开放的心态,对待大家的猜测也无所畏惧,“不服来测”的心态与实力似乎也在向外界宣布“copy from china”。

在开源DeepSeek-R1-Zero和DeepSeek-R1两个660B模型的同时,通过DeepSeek-R1的输出,蒸馏了6个小模型开源给社区,其中32B和70B模型在多项能力上实现了对标 OpenAI o1-mini 的效果,DeepSeek更被网友称为“源神”

令人惊喜的是,DeepSeek不仅在“性价比”上远超OpenAI o1正式版,并同步开源模型权重。以往总有人说,科技精神是创新、创业、合作、开放和快速学习。而作为美国AI代表的ChatGPT和Claude则是闭源的,中国多数优秀的大模型以DeepSeek、阿里通义千问为例,均为开源,这种创新机制将助力中国加速AI科技发展。

上月,360集团创始人周鸿祎就曾谈对国产大模型的看法,周鸿祎认为,过去我们是模仿者和追随者,他人擅长从零到一,我们擅长从一到n,如今情况正转变,中国科技领域原发性创新已让全世界看到,过去是“Copy to China”,以后可能是“Copy from China”。

当面对全球算力吃紧的情况下,人工智能行业的发展受限于算力,尤其是在中国,“芯片”卡脖子的背景下,DeepSeek试图用更少的算力、更低的成本来运行更大的模型,而这在外国网友看来是不可能实现的情况下,来自东方的神秘力量狠狠的秀了一波。

**尽管目前DeepSeek R1模型在函数调用、多轮、复杂角色扮演和json输出等任务中能力表现上不如DeepSeek - V3,目前针对中文和英文进行了优化,在处理其他语言的查询时可能会出现语言混合问题,**DeepSeek也表示未来将探索如何利用长CoT提升R1在通用能力上的表现、解决R1的语言混杂问题、优化R1的提示词策略、 将RL应用于软件工程任务,提升R1在该领域的性能、研究如何将R1的推理能力更好地应用于实际场景等。

大模型之家认为,或许DeepSeekR1的出现并非完美,但DeepSeek让高高挂起的论文走入到大众视野,不仅增强了国内科技自信,也为全球AI竞争格局注入了新的活力。

02

深度思考模式的“aha”moment,成为AI拟人化奇点

其中,DeepSeek被热议的是在DeepSeek-R1-Zero的训练过程中观察到的“顿悟时刻”的出现。

例如,论文中展示了一个在R1-Zero的训练过程中在解决一道数学题时的中间版本输出,模型在推理过程中突然意识到可以“重新评估”之前的步骤,并尝试用一种新的方法来解题。

在深度思考过程中,DeepSeek R1模型能够有自主的思考过程,这一行为,在上周大模型之家的测评中《东方神秘力量上线,DeepSeek APP低调却不奢华?》已有所体验,不知上周的深度思考模式是否已套用了当时R1-Zero/R1模型。

大模型之家以构建拉格朗日函数的经典高等数学题进行提问“已知实数x,y 满足x²+y²-4x-2y–4=0,求x-y的最大值”。刚开始DeepSeek给出了一种几何方法来进行解答,尽管结果是正确的,但DeepSeek接下来的思考过程中仍构建了拉格朗日乘数法进行解答,耗时41秒结果正确。

赵佳茹,公众号:大模型之家东方神秘力量上线,DeepSeek APP低调却不奢华?

这也与DeepSeek-R1的训练管道相关,论文中也介绍了开发DeepSeek-R1的管道。该管道包括两个旨在发现改进的推理模式并与人类偏好对齐的RL阶段,以及两个作为模型推理和非推理能力种子的SFT阶段。

模型的“顿悟时刻”正是凸显了DeepSeek开发者不是明确地教导模型如何解决问题,而只是提供正确的激励,致使AI能够自主地发展出先进的问题解决策略。“顿悟时刻”的出现有力地提醒了强化学习在解锁人工系统新智能水平方面的潜力。

这一现象也被解读为算法迭代优化的结果。在DeepSeek-R1的训练中,模型通过多轮强化学习逐步优化其推理能力,最终在某一时刻表现出“顿悟”行为。这种优化过程依赖于算法的不断迭代和改进。

“顿悟时刻”的出现展示了模型具有某种程度的自我反思能力,人工智能有可能在更少的人工干预下,自主地发展出更复杂的能力。这为开发更自主、更智能的人工智能系统提供了新的方向,为AGI的研究提供了新的思路和方法,加速了通用人工智能的实现进程。

作为国产大模型的代表,R1在数学推理、代码生成和自然语言理解等核心任务上表现卓越,性能媲美国际顶尖模型,甚至在强化学习(RL)领域实现了首次突破,完全跳过了传统监督微调(SFT)步骤,但在通用模型能力方面仍存在较大的局限性。

大模型之家认为,大模型的商用门槛主要包括技术、成本、数据、生态和监管等方面的挑战。DeepSeek虽然在性能和成本上具有显著优势,但在商用方面仍存在一些不足之处,上下文长度、多模态能力、生态建设和行业适配等方面仍有提升空间。未来,DeepSeek如何从一家纯技术支撑的企业转变为商业化的企业,提升其在商用场景中的竞争力也是首要面对的问题。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
### 关于DeepSeek-R1中的“顿悟”现象 “顿悟”现象(Aha Moment)是指在DeepSeek-R1的训练过程中观察到的一种特殊的学习行为。具体而言,在这一阶段,模型表现出一种自发的能力来重新评估其先前的行为决策,并对其进行优化调整[^1]。这种能力类似于人类在解决问题时突然获得灵感的过程,即通过回顾已有的信息并形成新的见解。 #### 自发性的学习机制 该现象的核心在于模型能够自主识别之前策略中存在的不足之处,并基于当前的知识水平改进这些策略。这表明即使是在无监督或强化学习环境中,AI也具备一定的自我修正能力。此特性不仅增强了算法解决复杂任务的效果,还揭示了RL(Reinforcement Learning, 强化学习)方法可能蕴含更深层次的认知模拟潜力。 #### 技术背景支持 为了实现上述效果,DeepSeek团队采用了GRPO(Gradient Regularized Policy Optimization),这是一种梯度正则化的策略优化技术[^2]。它通过对策略更新过程加入额外约束条件,使得整个训练流程更加稳定和平滑,从而促进了诸如“顿悟”这样的高级认知特征的发展。 ```python def grpo_update(policy_network, critic_network, states, actions, rewards): """ A simplified example of how GRPO might be implemented. Args: policy_network (nn.Module): The actor network to update. critic_network (nn.Module): The critic network used for evaluation. states (Tensor): Batched state inputs from the environment. actions (Tensor): Corresponding batched action outputs taken by agent. rewards (Tensor): Rewards received after taking those specific actions. Returns: loss_policy (float): Loss value associated with updating the policy. """ predicted_values = critic_network(states).detach() advantages = compute_advantage(rewards, predicted_values) old_log_probs = policy_network.log_prob(actions) new_log_probs = policy_network.forward(states).log_prob(actions) ratio = torch.exp(new_log_probs - old_log_probs) surrogate_objective = torch.min( ratio * advantages, torch.clamp(ratio, 1.0 - EPSILON_CLIP, 1.0 + EPSILON_CLIP) * advantages ) entropy_bonus = ENTROPY_COEFFICIENT * (-new_log_probs.mean()) # Add gradient regularization term here as part of total objective function grad_reg_term = calculate_gradient_regularization(policy_network.parameters()) final_loss = -(surrogate_objective + entropy_bonus + LAMBDA_GRADIENT_REGULARIZATION * grad_reg_term) optimizer.zero_grad() final_loss.backward() optimizer.step() return float(final_loss.item()) ``` 以上代码片段展示了一个简化版的GRPO更新逻辑,其中包含了计算优势函数、构建代理目标以及应用熵奖励和梯度正则项等多个重要环节。 #### 对未来研究的意义 “顿悟”现象的研究对于深入探索人工智能如何模仿甚至超越人类思维模式具有重要意义。一方面,它可以启发我们设计更为高效的机器学习架构;另一方面,则有助于解答关于智能本质的一些哲学层面的问题——例如意识是否可以被完全还原为物理规律等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值