一、说明
这篇文章主要通过"扣子"平台构建了一个智能体应用程序,帮助大家在平时的工作生活当中调用自己的智能体知识库,通过积累整理平时的知识,大大提高工作效率。
二、什么是扣子?
"扣子"是由字节跳动公司于2024年2月1日推出的一款集成AI智能体开发平台。它开创了国内AI聊天机器人快速开发的先河。
▲扣子首页
下面是扣子平台创建Bot的页面,对于初次使用的伙伴来说功能确实很多,但不知道从何下手搭建智能体。
▲扣子智能体搭建页面
上文提到的 Agent (智能体)是由4个关键部分构成,他们是:规划(Planning)、记忆(Memory)、工具(Tools)、行动(Action)
▲由LLM驱动的智能体系统
我们可以从这四个核心要素出发,对"扣子"的智能体创建界面进行详细解析,如下所示:
▲对智能体搭建页面进行标注
通过细致的标注,读者可以清晰地看到,构建一个智能体实际上是在配置四个核心要素。具体来说:
-
人设与回复逻辑:这涉及到Prompt的设置,它对应于智能体的规划阶段(Planning)。
-
插件、工作流、图像流等技能:这些技能的配置,以及对文本、表格等知识的整合,属于工具(Tools)的范畴。
-
变量、数据库、长期记忆:这些配置构成了智能体的记忆(Memory)部分。
-
预览与调试:最后,预览与调试环节则对应于智能体的执行(Action)阶段。
接下来,我将通过一个实际案例,展示如何利用"扣子"平台来搭建智能体。
三、知识库助理
在日常的工作中,经常会产生大量的知识信息,如:会议纪要、产品思考、读书笔记等,目前作者统一通过笔记工具进行管理。
▲笔记工具储存的知识库
然而,随着知识量的不断增长,仅仅依靠传统的分类和标签系统,我们发现要迅速定位到所需的信息或知识点变得越来越困难。在某些情况下,我们不得不逐个打开笔记文件来搜索内容,这无疑大大耗费了我们宝贵的时间。
那么,是否有可能建立一个个性化的知识库助手,通过简单的提问,就能得到精确且针对性的答案呢?这样的助手将使我们的知识检索过程变得更加高效和顺畅。
我们可以通过COZE来试试:
1、创建Bot
首先,在扣子的首页,点击“创建Bot”,Bot 就是Agent智能体(下文统称为“智能体”)。简单描述Bot的名称和相关的功能介绍,我们称为“知识库助手”。
▲创建Bot
2、配置智能体人设
然后,我们就可以定义好智能体的人设(即Prompt),在写Prompt的过程中,简单描述角色、要求,再利用扣子(coze)的AI优化功能进行相关的完善。
▲通过扣子AI功能优化智能体人设
3、创建知识库
扣子支持通过文本、表格、图片等文件类型创建知识库,我们选择文本格式(路径为:点击“个人空间”—“知识库”—“创建知识库”)。
▲选择导入知识文件类型与方式
"扣子"平台针对文本数据格式,提供了丰富的导入途径,涵盖了本地文档、网络数据源、Notion和飞书等多种选择。以我个人的实践为例,我习惯使用笔记软件将资料导出成DOC文件,然后导入到"扣子"平台,以此构建起我自己的专属知识库。
▲导入本地知识文件
文件导入成功后,再对知识进行切片和分段,支持“自动分段清洗”与“自定义”两种方式,通过分段处理后有助于提高检索的精准度。
▲对本地知识分段
现在,知识库创建完成了。
4、搭建工作流
智能体在回答问题时,主要依赖于本地知识库进行分析和推理,这样就无需接入外部的插件工具。然而,如果智能体仅依赖单一的本地知识库,可能会提供一些与问题不相关的答案。为了提高回答的准确性,我们需要设计并构建一个工作流系统。(路径为:点击“个人空间”—“工作流”—“创建工作流”)。
▲创建工作流
工作流可以理解为:通过选择不同的节点把任务拆解为多个步骤,让智能体按照预设工作流程对任务进行分步处理,从而提升对复杂任务的处理效率。
我们可以在左侧选择节点后点击“+”,把节点添加到右侧工作流编辑区,如下图所示:
▲工作流编辑区域
1)开始节点
“开始”节点会接受我们输入的问题,这里把输入变量名称设置为“question”。
▲开始节点
2)知识库节点
“知识库” 节点会从本地知识库中检索出与问题相关的知识片段,我们把刚才创建好的知识库添加到该节点中。
▲知识库节点
3)大模型节点
在“知识库”节点获取到知识片段后,结合原问题组装成提示词再送到“大模型”节点进行处理。此节点支持选择不同的大模型,如:豆包、通义千问、kimi、智谱等。
▲大模型选择
在“提示词”这一部分,定义好角色、任务与要求,可以让大模型更高效地处理任务。
▲大模型节点
4)结束节点
在大模型处理后,通过“结束”节点展示答复,完成任务。
▲结束节点
编辑好工作流后,点击右上方按钮对工作流进行【试运行】。
▲对工作流进行试运行
然后,输入相关问题后,验证工作流是否可以成功运行,成功后点击【发布】,即可完成工作流搭建。
▲运行成功
5、测试和发布
下面,我们在智能体搭设中,添加上面的工作流。
▲添加工作流
然后,在右侧的预览区域与调试区域中,对智能体进行调试。
▲测试智能体
为了提高与智能体的对话体验,我们还可以配置如:开场白、快捷指令、角色语音等个性化功能,让智能体更“拟人化”。
▲智能体的个性化设置
最后,点击在右上方的【发布】,选相应的发布平台即可,扣子支持了豆包、飞书、抖音、微信公众号等等多个平台。
▲智能体发布
现在,一个自己的**【知识库助手】**就搭建完成。
四、结语
“知识库助手”只是智能体搭建中,最小的闭环应用,按照相同的思路,我们可以构建出更加复杂且强大的智能体,后面有机会再跟大家分享。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈