国人等待了一个通宵的Qwen3发布了,实测下来,效果确实非常不错,本地部署成本低,云端访问速度快。
一、Qwen3模型家族概览
通义实验室正式发布新一代大语言模型Qwen3,包含多个规格的模型版本,涵盖从超大规模到轻量级模型,满足不同场景需求:
\1. 两大MoE(混合专家)模型:
- Qwen3-235B-A22B:超大规模旗舰级模型,总参数235B,每次推理激活22B参数。
- Qwen3-30B-A3B: 小型旗舰模型,总参数30B,每次推理激活3B参数。
\2. 六款密集模型(Dense Models):
- 参数范围从0.6B到32B,覆盖低资源设备到高性能计算场景。
二、核心竞争力分析
\1. 性能表现
- 对标行业顶级模型: 在代码生成、数学计算、通用能力测试中,Qwen3与DeepSeek-R1、OpenAI的o1/o3-mini、xAI的Grok-3、Google的Gemini-2.5-Pro等竞品模型相比具有竞争力。
- 小模型超越前辈: Qwen3-4B(仅40亿参数)的性能可媲美前代Qwen2.5-72B-Instruct(720亿参数),效率显著提升。
- MoE优势凸显: Qwen3-30B-A3B以10倍于QwQ-32B的激活参数,实现更强性能。
\2. 技术架构亮点
- 混合专家模型(MoE):
- Qwen3-235B-A22B和Qwen3-30B-A3B采用MoE架构,通过动态激活不同的"专家"子网络,平衡算力消耗与效果。
- 例如:Qwen3-235B-A22B拥有128个专家模块,每次仅激活8个(约6%)即可完成任务。
- 长文本支持:多数模型支持128K上下文长度,适用于复杂文档处理、长对话历史分析等场景。
三、模型参数与架构细节
技术解读:
- 注意力机制优化: 高层模型使用更多查询头(Q)和更少键值头(KV),增强并行计算能力。
- 专家模块设计: MoE模型通过128个专家模块组合实现高效推理,显著降低硬件门槛。
- 上下文扩展性: 多数模型支持128K长度,远超传统8K/32K限制,适应代码生成、学术论文分析等长序列任务。
四、开放策略与生态支持
\1. 开源许可:
- 所有密集模型和MoE模型均采用Apache 2.0协议,允许商业用途且无需贡献回溯代码。
\2. 成本低:
- 中小企业:利用Qwen3-4B或Qwen3-30B-A3B在低成本GPU上部署。
- 大型企业:使用Qwen3-235B-A22B构建垂直领域超大规模系统。
五、最新模型体验
官网体验地址:
https://chat.qwen.ai/
官方博客:
https://qwenlm.github.io/blog/qwen3/
魔搭社区:
https://modelscope.cn/collections/Qwen3-9743180bdc6b48
GitHub:
https://github.com/QwenLM/Qwen3
Hugging Face:
https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
实测本地部署
在Mac M4 pro + 64G内存的配置下,跑Qwen3-30B-A3B(FP16)版本,使用通用内存62.41G
案例1:狼人杀网页游戏开发
在网页上使用满血版本的旗舰版Qwen3-235B-A22B,给它一个任务:
帮我写一个单页面的狼人杀游戏,用户是通过鼠标点击来跟网页交互,其他角色使用AI自动生成和运行。页面游戏要可以访问并且运行
第一次回复中生成的网页代码中游戏交互有问题,让它改正之后,真的就可以运行了,但是因为所有玩家的投票决策并没有经过AI分析,因此每一轮投票结果有点乱,但一次性能做出一个可运行的完整逻辑的游戏页面,还是比以前用工作流要去搭建这套游戏体系简单的多。
https://chat.qwen.ai/s/b427c941-f1cd-4eb3-9f06-5cd0dbbc4d1b?fev=0.0.85
有兴趣的小伙伴可以继续接着完善。
案例2:
用藏师傅经典的网页生成提示词,将Qwen3模型的官方说明页面丢给它,让它生成一个具备美感的页面。U1S1,藏师傅的提示词就是好用。
https://chat.qwen.ai/s/d4a38cbd-2ab9-4fff-a953-80d66caada80?fev=0.0.85
Qwen3今天只是开始,在未来:
通义团队表示将持续优化Qwen3系列,计划推出:
- 更强推理能力的迭代版本(如逻辑链强化)
- 面向特定领域的垂直模型(医疗、金融等)
- 跨模态扩展(图像/视频理解能力)
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈