Vision Transformer (ViT)的原理讲解与后续革新【附上pytorch的代码!】

Vision Transformer (ViT)详解

一、背景介绍

  Vision Transformer (ViT)是Google团队在2020年提出的一种新型图像分类模型,它成功地将Transformer架构应用于视觉领域。通过将图像分割成多个patch并送入Transformer编码器处理,ViT模型能够在大规模数据集上实现卓越的性能,超越了传统的CNN模型。本文将详细解析ViT模型的工作原理、关键组件以及代码实现。以新手的身份来谈谈自己的理解。
在这里插入图片描述

二、相关工作

  Transformers最初由Vaswani等人提出,用于机器翻译任务,并随后在多个NLP任务中取得了显著成果。这些基于大型Transformers的模型通常首先在大型语料库上进行预训练,然后根据具体下游任务进行微调。ViT模型借鉴了这种预训练与微调的策略,将其应用于图像分类任务中。

三、方法

  1. 图像块嵌入 (Patch Embeddings)
      ViT模型首先将输入图像分割成一系列固定大小的patch(例如16x16像素)。然后,每个patch通过线性层转换为固定长度的向量,这些向量将作为Transformer编码器的输入。

  2. 可学习的位置嵌入 (Learnable Position Embeddings)
      由于Transformer模型本身不具有处理序列位置信息的能力,因此ViT引入了可学习的位置嵌入来弥补这一缺陷。位置嵌入是一个与patch嵌入维度相同的向量表,其中每一行代表一个位置向量。通过将位置嵌入与patch嵌入相加,模型能够捕捉到图像中不同位置的信息。
    在这里插入图片描述

  3. Transformer 编码器
      ViT模型的核心组件是Transformer编码器,它负责处理经过嵌入的图像块序列。Transformer编码器由多个堆叠的编码器层组成,每个编码器层包含自注意力机制和前馈神经网络。通过多层堆叠,模型能够捕捉到图像中的多层次信息。
    在这里插入图片描述

# MHA
class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
 
        self.num_heads = num_heads
        head_dim = dim // num_heads
 
        self.scale = qk_scale or head_dim ** -0.5
 
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
 
        # 附带 dropout
        self.proj_drop = nn.Dropout(proj_drop)
 
    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)
 
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
 
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
 
        return x
  1. 归纳偏置与混合架构
      与CNN模型相比,ViT模型摒弃了卷积操作,完全依赖于自注意力机制来处理图像块序列。这种设计使得ViT能够捕捉到图像中的全局信息,并在大规模预训练后在多个图像识别任务中取得优异的结果。同时,一些研究也探索了将CNN与Transformer相结合的混合架构,以进一步提升模型性能。

  2. 微调及更高分辨率
      在预训练阶段,ViT模型通常在大规模数据集上进行训练,以学习通用的视觉特征。然后,针对具体的下游任务(如图像分类、目标检测等),可以通过微调来使模型适应任务需求。此外,为了适应更高分辨率的输入图像,可以采用插值等方法对patch嵌入进行调整。

  3. 超参数调整
      在训练ViT模型时,学习率是一个关键的超参数。适当的学习率可以加速模型的收敛速度并提升性能。因此,在训练过程中需要对学习率进行细致的调整和优化。

四、实验

  为了验证ViT模型的有效性,原文在多个图像分类数据集上进行了实验。实验结果表明,ViT模型在大规模数据集上取得了显著的性能提升,并且在微调后能够很好地适应不同的下游任务。
在这里插入图片描述

五、后续相关工作

  Vision Transformer(ViT)无疑是近年来计算机视觉领域的一项重大突破,其将Transformer架构成功引入图像识别任务,为处理大尺寸图像和长序列数据提供了一种全新的视角。自ViT模型问世以来,其在图像分类、目标检测等多个任务上均取得了卓越的性能,为计算机视觉领域的发展注入了新的活力。
  在ViT的基础上,后续的研究工作主要围绕模型优化、性能提升以及跨领域应用展开。首先,针对ViT模型参数量和计算量较大的问题,研究者们通过改进模型架构,引入残差注意力模块等方法,有效地减少了模型的参数量和计算量,同时提升了模型的性能。这些改进不仅使得ViT模型在处理大规模数据集时更加高效,还增强了模型对平移不变性的鲁棒性。
  其次,随着预训练技术的发展,研究者们开始探索ViT模型的预训练方法和微调技术。通过在大规模数据集上进行预训练,ViT模型能够学习到更加丰富的视觉特征,从而提高了其在下游任务中的性能。此外,跨模态应用也是ViT模型发展的重要方向之一。通过将图像和文本数据相结合,研究者们构建了一种基于ViT的跨模态模型,用于图像和文本的分类和生成等任务。这种跨模态应用不仅拓展了ViT的应用范围,也为计算机视觉和自然语言处理之间的交互提供了新的思路。ViT模型还在实时性应用和多任务学习等领域展现出巨大的潜力。通过将ViT与轻量级神经网络相结合,研究者们构建了一种高效的实时性目标检测系统,用于监控和安全等领域。同时,为了进一步提高ViT的性能和应用范围,研究者们还尝试了将ViT应用于多任务学习中,通过共享底层特征和信息交互,实现了多个任务的同时优化。

参考资料

论文:Vision Transformer
博客:Vision Transformer详解

版权声明

本博客内容仅供学习交流,转载请注明出处。

### 回答1: Vision Transformer是一种新型的图像分类模型,它使用了自注意力机制来处理图像特征,相比传统的卷积神经网络,具有更好的可扩展性和泛化能力。近期的研究表明,通过改进Vision Transformer的结构和训练方法,可以进一步提高其性能,例如使用更大的模型、引入多尺度特征、增加数据增强等方式。这些改进使得Vision Transformer在图像分类、目标检测等任务中取得了更好的效果,成为了当前研究的热点之一。 ### 回答2: 近年来,Transformer模型成为了自然语言处理中最流行的模型之一。它的创新之处在于,它将每一个句子中的每一个单词都视为一个序列,这意味着单词之间的顺序和关系可以更好地被模型理解。最初,Transformer模型被用来进行自然语言处理中的任务,比如语言翻译。但是,最近,它被用来解决各种机器学习问题。 然而,当我们将Transformer扩展到处理更大的数据集时,它的计算成本也随之增加。因此,有些研究人员提出了一种新的Transformer变体,即Vision TransformerViT)。它是一种基于Transformer模型的视觉任务模型,其主要目标是改进图像分类和对象检测等视觉任务的性能。 ViT的主要创新之处在于,它使用了一个类似于将图像拆成打大小块的方式来处理图像。这使得模型能够更好地处理大型输入。ViT的输入是一张图像,将其分成若干个大小相同的图像块,每个块的大小和位置都是相同的,然后依次输入到Transformer模型中。 另一个改进是,ViT使用了卷积神经网络和Transformer相结合的方式,来更好地利用卷积神经网络对图像区域的局部特征提取和Transformer对全局特征抽取的优势。这种结合方式使得ViT在训练速度和精度上都有了很大的提升。 总的来说,ViT是一种非常有前途的模型,它为计算机视觉领域的发展提供了更加广阔的空间。ViT不仅在训练过程中表现良好,而且在图像分类和对象检测等大规模实际应用中也有很好的表现。然而,尽管ViT在现有的视觉任务中表现良好,但仍需更多的研究来改进其性能和稳定性。 ### 回答3: 随着人工智能的发展,计算机视觉逐渐成为研究热点。在计算机视觉中,图像分类是最重要的任务之一,因为它可以用于图像检索,目标检测,人脸识别等多个应用领域。而图像分类主要通过深度卷积神经网络实现,但在长宽比例较大的图像中,其性能不足,因此需要更加高效的算法。 近年来,Vision Transformer模型提出了一种新的方法来处理这个问题。Vision Transformer是基于Transformer架构设计的模型,这样做的好处是可以处理任意尺寸和长宽比例的图像,同时其可解释性比传统的卷积神经网络要更高。不过,Vision Transformer也存在一些问题,如需要大量的参数,训练时间长,且在处理小尺寸图像方面性能不如现有的CNN模型等。 针对上述问题,研究者在Vision Transformer模型的基础上进行了进一步改进。以下是一些主要的改进点: 1. 改进注意力机制:主要包括Local Patch Attention和Global Context Attention。前者将每个像素点附近的局部图像块作为输入,后者获取全局特征,可以在不降低性能的情况下减少模型参数。 2. 增加Dropout:在数据集比较小的情况下,模型容易出现过拟合。因此,为了避免过拟合,可以增加随机丢弃某些神经元的Dropout操作。 3. 使用预训练权重:在大规模图像数据集上预训练模型可以加快模型收敛速度,提高准确率。 4. 增加非线性特征映射:卷积神经网络中常用的卷积层会通过非线性激活函数对图像进行特征提取,这一步操作类似于图像的特征映射。类似的,在Vision Transformer模型中也可以使用非线性特征映射来提高图像分类的准确率。 总体看来,这些方法都可以对Vision Transformer模型进行一些改进,提高其性能。其中一些方法是从传统的卷积神经网络中借鉴而来的,可以在现有深度学习框架中实现。但是,因为Vision Transformer是一种全新的模型,其特征映射和注意力机制等方法也需要不断探索改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值