第四章 电磁场解析方法
k 为 ε 为\varepsilon 为ε或 μ \mu μ
一、唯一性定理
唯一性定理是用来解释解存在和唯一的条件。
静态电磁场的唯一性定理:
eg1
【例4-1】同心导体球壳间充满两种介质。内导体带电荷量Q ,外导体球壳接地。求导体球壳内电场分布
由导体的边界条件知:导体表面电场的切向分量为0。因此,假设介质中电场只有径向分量,设介质1和2中电场为:
切向是说导体球壳不是介质,因此只存在径向的分量就可以使用高斯定理求解电场
答案:
唯一性定义验证此解是否为静电场的解
二、镜像方法
https://www.docin.com/p-1054675092.html 可参考查看
为了得到感应电荷及其产生的电位,人们试图找出一个或者多个想象的点电荷来等效边界面上感应电荷的贡献,这个想象的一个或者多个点电荷称为像电荷。这一方法称为镜像方法。
基本方法
①找一个或几个假想电荷等效感应电荷的贡献
②像电荷在区域的外部,与原电荷符号相反
③像电荷位置与原电荷的位置互为共轭点对
④利用边界条件确定像电荷大小和位置
③像电荷位置与原电荷的位置互为共轭点对
解释:互为共轭点对是指 原电荷与感应电荷关于感应电荷中心对称。
【例1】无穷大接地导体板上 单位点电荷 在上半空间的电位(导体板上面有一个单位点电荷)
找出一个点电荷来等效边界面上感应电荷的贡献 -Q


例2 、求接地导体球壳外部空间的Green函数。
接地导体球:球壳的电势(标量直接相加)是0。 定解问题如下:
eg3 利用球壳镜像 和 无限大平板等效 求解

eg4
三、格林函数法
格林函数:点源在一定的边界条件下所建立的场的位函数
思想:单位激励的线性叠加
第一类边界条件下静电场的格林函数的定解问题:
下静电场的格林函数的定解问题:
[外链图片转存中…(img-1hyoDVGj-1650970289491)]
[外链图片转存中…(img-n1IwGnK8-1650970289491)]