第五章 时变电磁场
一、时变电磁场的波动方程
1.波动方程的推导
思路:都是对旋度再求一次旋度
电场波动方程

磁场波动方程

2.时变电磁场的势函数
目的:为了减少变量,方便求解
磁矢势与电标量
引入:
B
(
r
,
t
)
=
∇
×
A
(
r
,
t
)
B(r,t)=\nabla \times A(r,t)
B(r,t)=∇×A(r,t)
代入电磁感应式子:
∇
×
[
E
(
r
,
t
)
+
∂
A
(
r
,
t
)
∂
t
]
=
0
\nabla \times[E(r,t)+\frac{\partial A(r,t)}{\partial t}]=0
∇×[E(r,t)+∂t∂A(r,t)]=0
(9)式中为无旋矢量场,可表示为变量函数的梯度
E
(
r
,
t
)
+
∂
A
(
r
,
t
)
∂
t
=
−
∇
ϕ
(
r
,
t
)
E
(
r
,
t
)
=
−
∂
A
(
r
,
t
)
∂
t
−
∇
ϕ
(
r
,
t
)
E(r,t)+\frac{\partial A(r,t)}{\partial t}=-\nabla \phi(r,t)\\ E(r,t)=-\frac{\partial A(r,t)}{\partial t}-\nabla \phi(r,t)
E(r,t)+∂t∂A(r,t)=−∇ϕ(r,t)E(r,t)=−∂t∂A(r,t)−∇ϕ(r,t)
A ( r , t ) 为 磁 矢 势 ϕ ( r , t ) 为 电 标 势 A(r,t)为磁矢势\quad\quad\quad\quad \phi(r,t)为电标势 A(r,t)为磁矢势ϕ(r,t)为电标势
时变电场由磁矢势和电标势共同描述
势函数规范及其方程
-
Coulomb规范:得到泊松方程
有旋无散场
∇ ⋅ A ( r , t ) = 0 \nabla \cdot A (r,t)=0 ∇⋅A(r,t)=0
- Lorentz规范:得到达朗贝尔方程
∇ ⋅ A ( r , t ) + ε μ ∂ ϕ ( r , t ) ∂ t = 0 \nabla \cdot A (r,t)+\varepsilon\mu\frac{\partial\phi(r,t)}{\partial t}=0 ∇⋅A(r,t)+εμ∂t∂ϕ(r,t)=0

注意:不同的规范可以通过变换实现相互的转换
推迟势
上述波动方程的解为推迟势
二、 时变电磁场的能量
1.坡印廷矢量
表明:电磁场能量通过电磁场传播
能流密度:
S = e n ⃗ lim Δ s → 0 Δ w Δ S S=\vec{e_n}\lim_{\Delta s\rightarrow0}\frac{\Delta w}{\Delta S} S=enΔs→0limΔSΔw
坡印廷矢量(电磁场能量流密度矢量)
方向 —— 电磁能量传输的方向
S
⃗
(
r
,
t
)
=
E
⃗
×
H
⃗
\vec{S}(r,t)=\vec{E}\times\vec{H}
S(r,t)=E×H
电磁场能量密度
w
(
r
,
t
)
=
1
2
[
μ
H
2
+
ε
E
2
]
w(r,t)=\frac{1}{2}[\mu H^2+\varepsilon E^2]
w(r,t)=21[μH2+εE2]
坡印廷定理:闭合空间V内,电磁场能量守恒和转化的关系式。
单位时间内通过界面S进入V内的电磁场能量=单位时间内闭合区域V内电磁场能量的增量 +区域V内场对电荷系统所作的功
KaTeX parse error: Undefined control sequence: \ at position 34: …S(r,t) \cdot ds\̲ ̲=\iiint_{v}[\ve…
例1 双导线能量传输系统
E
⃗
=
−
U
d
y
⃗
H
⃗
=
I
a
x
⃗
(
利
用
安
培
环
路
定
理
)
\vec E =-\frac{U}{d}\vec y\\ \quad\quad\quad\vec H=\frac{I}{a}\vec x \quad\quad\quad (利用安培环路定理)
E=−dUyH=aIx(利用安培环路定理)
【例2】同轴传输线内导线半径为a,外导线半径为b,两导线间为均匀绝缘介质 (如图)。导线载有电流I,两导线间的电压为U
(1)电场和磁场的计算
(2)能流密度矢量的计算
(3)传输功率的计算
三、唯一性定理
唯一性定理,表述如下:如果在闭合区域V 内,
①t=n 时刻的电磁场已知(初始条件).
② t>n 的任何时刻,电场或磁场在区域边界上的切向分量已知,或部分边界上电场和其余边界上的磁场切向分量已知(边界条件).
则在t>=n 区域V 内存在唯一电磁场。
证明:反证法
假设有两组解 :


得出磁场能量减小。
四、谐变电磁场
什么是谐变电磁场?
随时间作简谐变化(同一频率)的电磁场称为谐变电磁场
为什么讨论和研究谐变电磁场?
(1)初始条件在任意时变情形下难以获取,而在谐变情形下,场量随时间作简谐变化 ,不存在场的初始状态。
(2)任意时变情形下,介质电磁参数特性复杂,难以推导出波动方程,求解困难。而在谐变情形下,电磁参数是常数。
1.介质的特性参数
ε μ 是 与 时 间 无 关 的 , 但 是 与 频 率 有 关 \varepsilon\quad\mu 是与时间无关的,但是与频率有关 εμ是与时间无关的,但是与频率有关
对于谐变电磁场,线性均匀各向同性介质的极化强度P(r,t)、磁化强度M(r,t)和传导电流密度J(r,t)也是谐变量
2.谐变电磁场的复数表示
电场可表示为:
瞬时表达式:
复向量表达式
E
⃗
(
r
)
=
R
e
(
e
⃗
x
E
x
(
r
⃗
)
e
j
ϕ
x
e
j
w
t
)
+
R
e
(
e
⃗
y
E
y
(
r
⃗
)
e
j
ϕ
y
e
j
w
t
)
+
R
e
(
e
⃗
z
E
z
(
r
⃗
)
e
j
ϕ
z
e
j
w
t
)
\vec E(r)=Re(\vec e_x E_x(\vec r)e^{j\phi_x}e^{jwt})+Re(\vec e_y E_y(\vec r)e^{j\phi_y}e^{jwt})+Re(\vec e_z E_z(\vec r)e^{j\phi_z}e^{jwt})
E(r)=Re(exEx(r)ejϕxejwt)+Re(eyEy(r)ejϕyejwt)+Re(ezEz(r)ejϕzejwt)
为了书写和表达方便,约定不写出
e
j
w
t
e^{jwt}
ejwt
和圆点“ .”
eg4.5.1
做法:
(1)将正余弦函数变为余弦函数一次项,积化和差
(2)写成复指数形式
(3)将e^jwt项省去
3.谐变电磁场的麦克斯韦方程组
4.能量
谐变电磁场的坡印廷矢量
瞬时值
平均坡印廷矢量
eg2
5.谐变电磁场的波动方程
在谐变电磁场中,介质的特性参数 为常数,场量满足的波动方程为
波数
6.色散
由于介质特性参数是频率的函数,不同频率的谐变电磁场在介质中传播速度v不同,波长也不相同。这一现象称为介质的色散,具有色散特性的介质称为色散介质。
g-DGNp1RXa-1650970250130)]
波数
[外链图片转存中…(img-Azzbu2Kn-1650970250130)]
[外链图片转存中…(img-ACzIAw6T-1650970250131)]
[外链图片转存中…(img-INbmeen1-1650970250131)]
6.色散
由于介质特性参数是频率的函数,不同频率的谐变电磁场在介质中传播速度v不同,波长也不相同。这一现象称为介质的色散,具有色散特性的介质称为色散介质。