目标检测性能评估参数 — IoU & mAP

本文详细介绍了目标检测中重要的评估指标IoU(交并比)、mAP(平均精度均值)及其计算过程。IoU用于衡量检测边框与真实边框的匹配程度,通常设定阈值为0.5。mAP则是综合评估模型分类和定位能力的指标,考虑了所有类别的平均精度。文章还解释了P、AP的概念,并指出mAP是所有类别平均精度的平均值,用于整体评价模型性能。
摘要由CSDN通过智能技术生成


目标检测:给定一个图像,找到其中的目标,确定其位置,并对目标进行分类。

1. IoU

交并比(Intersection over Union),IoU 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比值,这个数据也被称为Jaccard指数。

一般情况下设定IoU阈值为0.5,也就是说当IoU>0.5时,认为是真实的检测(true detection),否则认为是错误的检测(false detection)。

通过简化,我们可以清晰地看到,交集计算的关键是交集上下界点(图中蓝点)的计算。

我们假设集合 A 为 [x1,x2],集合 B 为 [y1 ,y2]。然后我们来求AB交集的上下界限。交集计算的逻辑:

  • 交集下界 z1:max(x1,y1)
  • 交集上界 z2:min(x2, y2)

如果 z2 − z1 < 0,则说明集合 A 和集合 B 没有交集。

2. mAP,mean Average Precision

目标检测问题中的模型的分类和定位都需要进行评估,每个图像都可能具有不同类别的不同目标,因此,在图像分类问题中所使用的标准度量不能直接应用于目标检测问题。

对于物体检测问题,Ground Truth包括图像,图像中的目标的类别以及图像中每个目标的边界框。

使用MAP值时我们需要满足一下条件:

(1) MAP总是在固定的数据集上计算
(2) 它不是量化模型输出的绝对度量,但是是一个比较好的相对度量。当我们在流行的公共数据集上计算这个度量时,这个度量可以很容易的用来比较不同目标检测方法
(3) 根据训练中类的分布情况,平均精度值可能会因为某些类别(具有良好的训练数据)非常高(对于具有较少或较差数据的类别)而言非常低。所以我们需要MAP可能是适中的,但是模型可能对于某些类非常好,对于某些类非常不好。因此建议在分析模型结果的同时查看个各类的平均精度,这些值也可以作为我们是不是需要添加更多训练样本的一个依据。

2.1 P(一张图像某类别的精度)

用计算出的loU值与设定的loU阈值(例如0.5)比较,就可以计算出每个图像中每个类的正确检测次数(A)。对于每个图像,我们都有ground truth的数据,因此也知道了该图像中给定类别的实际目标(B)的数量。因此,一张图像类别C的Precision= A/B,即图像正确预测(True Positives)的数量除以在图像张这一类的总的目标数量。

2.2 AP(N张图像某类别的平均精度)

假如现在有一个给定的类,验证集中有100个图像,并且我们知道每个图像都有其中的所有类(基于ground truth)。所以我们可以得到100个精度值,计算这100个精度值的平均值,得到的就是该类的平均精度,即一个C类的平均精度=在验证集上所有的图像对于类C的精度值的和/有类C这个目标的所有图像的数量

2.3 mAP(N张图像M个类别平均精度的平均值)

现在整个集合中有20个类,对于每个类别,我们都先计算loU,接下来计算精度,然后计算平均精度。所有我们现在有20个不同的平均精度值。使用这些平均精度值,我们可以轻松的判断任何给定类别的模型的性能。

但问题是使用20个不同的平均精度使我们难以度量整个模型,所以我们可以选用一个单一的数字来表示一个模型的表现(一个度量来统一它们),可以取所有类的平均精度值的平均值,即MAP(均值平均精度)。MAP=所有类别的平均精度求和除以所有类别,即数据集中所有类的平均精度的平均值。


参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值