Python对DataFrame的常规操作

import numpy as np
import pandas as pd
from pandas import  *
from numpy import *


data = DataFrame(np.arange(16).reshape(4,4),index = list("ABCD"),columns=list('wxyz'))
print data
print data[0:2]       #取前两行数据
print'+++++++++++++'

print len(data )              #求出一共多少行
print data.columns.size      #求出一共多少列
print'+++++++++++++'

print data.columns        #列索引名称
print data.index       #行索引名称
print'+++++++++++++'

print data.ix[1]                #取第2行数据
print data.iloc[1]             #取第2行数据
print'+++++++++++++'

print data['x']      #取列索引为x的一列数据
print data.loc['A']      #取第行索引为”A“的一行数据,
print'+++++++++++++'

print data.loc[:,['x','z'] ]          #表示选取所有的行以及columns为a,b的列;
print data.loc[['A','B'],['x','z']]     #表示选取'A'和'B'这两行以及columns为x,z的列的并集;
print'+++++++++++++'

print data.iloc[1:3,1:3]              #数据切片操作,切连续的数据块
print data.iloc[[0,2],[1,2]]              #即可以自由选取行位置,和列位置对应的数据,切零散的数据块
print'+++++++++++++'

print data[data>2]       #表示选取数据集中大于0的数据
print data[data.x>5]       #表示选取数据集中x这一列大于5的所有的行

print'+++++++++++++'
a1=data.copy()
print a1[a1['y'].isin(['6','10'])]    #表显示满足条件:列y中的值包含'6','8'的所有行。

print data.mean()           #默认对每一列的数据求平均值;若加上参数a.mean(1)则对每一行求平均值;
print data['x'].value_counts()    #统计某一列x中各个值出现的次数:

print data.describe() #对每一列数据进行统计,包括计数,均值,std,各个分位数等。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值