gensim中word2vec API参数说明

这篇博客详细介绍了gensim库中word2vec模型的相关API,重点在于gensim.models.word2vec.Word2Vec类的参数说明。内容包括算法参数的翻译及解释,帮助理解如何在gensim中应用word2vec进行词向量训练。
摘要由CSDN通过智能技术生成

在gensim中,word2vec相关的API都在gensim.models.word2vec中,与算法相关的参数在 gensim.models.word2vec.Word2Vec中。其具体参数说明如下:(个人翻译,如有出入欢迎指正)

class Word2Vec(BaseWordEmbeddingsModel):
    """训练, 使用和评估https://code.google.com/p/word2vec/中描述的神经网络

    一旦你训练完一个模型 (不再更新,仅查询)
    只能在`~gensim.models.keyedvectors.KeyedVectors`的`self.wv`实例中存储并使用,这样可以节省内存

    该模型可以通过`~gensim.models.word2vec.Word2Vec.save`和`~gensim.models.word2vec.Word2Vec.load`方法来存储和加载

    训练后的单词向量还可以通过`self.wv.save_word2vec_format`原始word2vec实现方法和`gensim.models.keyedvectors.KeyedVectors.load_word2vec_format`来存储和加载。

    一些重要的属性如下:
    属性
    ----------
    wv : :class:`~gensim.models.keyedvectors.Word2VecKeyedVectors`
        这个对象本质上包含单词和embeeding之间的映射。经过训练,可以通过各种方式直接用来查询这些embeeding。有关示例,请参见模块级文档说明。

    vocabulary : :class:`~gensim.models.word2vec.Word2VecVocab`
        该对象表示模型的词汇表(有时在gensim中称为Dictionary)。
        除了跟踪所有不同的单词之外,此对象还提供了其他功能,例如构造霍夫曼树(常用词更接近词根),或丢弃极为罕见的词。

    trainables : :class:`~gensim.models.word2vec.Word2VecTrainables`
        该对象表示用于训练embeeding的内部浅层神经网络。
        在两种可用的训练模式(CBOW或SG)中,网络的语义略有不同,但是您可以将其视
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值