吴恩达机器学习(第三周)-6、逻辑回归(Logistic Regression)

本文详细介绍了逻辑回归算法在处理二元分类问题,如肿瘤诊断中的应用,包括线性拟合、多项式拟合、代价函数(对数损失函数)、决策边界的概念以及如何通过梯度下降法进行模型优化。此外,文章还探讨了如何将多类别分类问题转化为一系列二元分类问题的方法——One-vs-all。
摘要由CSDN通过智能技术生成

6.1 分类(Classification)

在分类问题中,预测的结果是离散值(结果是否属于某一类),逻辑回归算法(Logistic Regression)被用于解决这类分类问题。

  • 垃圾邮件判断
  • 金融欺诈判断
  • 肿瘤诊断

讨论肿瘤诊断问题:

肿瘤诊断问题的目的是告诉病人是否为恶性肿瘤,是一个二元分类问题(binary class problems),则定义 $ y \in\lbrace 0, 1\rbrace$,其中 0 表示负向类(negative class),代表恶性肿瘤("-"),1 为正向类(positive class),代表良性肿瘤("+")。如图,定义最右边的样本为偏差项

在未加入偏差项时,线性回归算法给出了品红色的拟合直线,若规定

hθ(x)⩾0.5 ,预测为 y=1,即正向类;

hθ(x)<0.5 ,预测为 y=0,即负向类。

即以 0.5 为阈值(threshold),则我们就可以根据线性回归结果,得到相对正确的分类结果 y。

接下来加入偏差项,线性回归算法给出了靛青色的拟合直线,如果阈值仍然为 0.5,可以看到算法在某些情况下会给出完全错误的结果,对于癌症、肿瘤诊断这类要求预测极其精确的问题,这种情况是无法容忍的。

不仅如此,线性回归算法的值域为全体实数集($h_\theta(x) \in R$),则当线性回归函数给出诸如 hθ(x)=10000,hθ(x)=−10000 等很大/很小(负数)的数值时,结果 y∈{0,1},这显得非常怪异。

区别于线性回归算法,逻辑回归算法是一个分类算法,其输出值永远在 0 到 1 之间,即 hθ(x)∈(0,1)。

6.2 假设函数表示(Hypothesis Representation

为了使 hθ(x)∈(0,1),引入逻辑回归模型,定义假设函数 $$ h_\theta \left( x \right)=g(z)=g\left(\theta^{T}x \right) $$ 对比线性回归函数 hθ(x)=θTx,$g$ 表示逻辑函数(logistic function),复合起来,则称为逻辑回归函数。

逻辑函数是 S 形函数,会将所有实数映射到 (0,1) 范围。

sigmoid 函数(如下图)是逻辑函数的特殊情 况,其公式为 g(z)=11+e−z。

应用 sigmoid 函数,则逻辑回归模型:$$h_{\theta}(x)=g(\theta^Tx) =\frac{1}{1+e^{-\theta^Tx}}$$

逻辑回归模型中,$h_\theta \left( x \right)$ 的作用是,根据输入 x 以及参数 θ,计算得出”输出 y=1“的可能性(estimated probability),概率学中表示为:

$$ \begin{align*} & h_\theta(x) = P(y=1 | x ; \theta) = 1 - P(y=0 | x ; \theta) \ & P(y = 0 | x;\theta) + P(y = 1 | x ; \theta) = 1 \end{align*} $$ 以肿瘤诊断为例,$h_\theta \left( x \right)=0.7$ 表示病人有 70 的概率得了恶性肿瘤。

6.3 决策边界(Decision Boundary)

决策边界的概念,可帮助我们更好地理解逻辑回归模型的拟合原理。

在逻辑回归中,有假设函数 hθ(x)=g(z)=g(θTx)。

为了得出分类的结果,这里和前面一样,规定以 0.5 为阈值:

$$ \begin{align*} & h_\theta(x) \geq 0.5 \rightarrow y = 1 \ & h_\theta(x) < 0.5 \rightarrow y = 0 \ \end{align*} $$ 回忆一下 sigmoid 函数的图像:

观察可得当 g(z)≥0.5 时,有 z≥0,即 θTx≥0。

同线性回归模型的不同点在于: $$ \begin{align*} z \to +\infty, e^{-\infty} \to 0 \Rightarrow g(z)=1 \ z \to -\infty, e^{\infty}\to \infty \Rightarrow g(z)=0 \end{align*} $$ 直观一点来个例子,${h_\theta}\left( x \right)=g\left( {\theta_0}+{\theta_1}{x_1}+{\theta_{2}}{x_{2}}\right)$ 是下图模型的假设函数:

根据上面的讨论,要进行分类,那么只要 $ {\theta_0}+{\theta_1}{x_1}+{\theta_{2}}{x_{2}}\geq0$ 时,就预测 y=1,即预测为正向类。

如果取 $\theta = \begin{bmatrix} -3\1\1\end{bmatrix}$,则有 z=−3+x1+x2,当 z≥0 即 x1+x2≥3 时,易绘制图中的品红色直线即决策边界,为正向类(以红叉标注的数据)给出 y=1 的分类预测结果。

上面讨论了逻辑回归模型中线性拟合的例子,下面则是一个多项式拟合的例子,和线性回归中的情况也是类似的。

为了拟合下图数据,建模多项式假设函数:

$$ {h_\theta}\left( x \right)=g\left( {\theta_0}+{\theta_1}{x_1}+{\theta_{2}}{x_{2}}+{\theta_{3}}x_{1}^{2}+{\theta_{4}}x_{2}^{2} \right) $$ 这里取 $\theta = \begin{bmatrix} -1\0\0\1\1\end{bmatrix}$,决策边界对应了一个在原点处的单位圆(${x_1}^2+{x_2}^2 = 1$),如此便可给出分类结果,如图中品红色曲线:

当然,通过一些更为复杂的多项式,还能拟合那些图像显得非常怪异的数据,使得决策边界形似碗状、爱心状等等。

简单来说,决策边界就是分类的分界线,分类现在实际就由 z (中的 θ)决定啦。

6.4 代价函数(Cost Function)

那我们怎么知道决策边界是啥样?$\theta$ 多少时能很好的拟合数据?当然,见招拆招,总要来个 J(θ)。

如果直接套用线性回归的代价函数: J(θ)=12m∑i=1m(hθ(x(i))−y(i))2

其中 hθ(x)=g(θTx),可绘制关于 J(θ) 的图像,如下图

回忆线性回归中的平方损失函数,其是一个二次凸函数(碗状),二次凸函数的重要性质是只有一个局部最小点即全局最小点。上图中有许多局部最小点,这样将使得梯度下降算法无法确定收敛点是全局最优。

如果此处的损失函数也是一个凸函数,是否也有同样的性质,从而最优化?这类讨论凸函数最优值的问题,被称为凸优化问题(Convex optimization)

当然,损失函数不止平方损失函数一种。

对于逻辑回归,更换平方损失函数为对数损失函数,可由统计学中的最大似然估计方法推出代价函数 J(θ):

$$ \begin{align*} & J(\theta) = \dfrac{1}{m} \sum_{i=1}^m \mathrm{Cost}(h_\theta(x^{(i)}),y^{(i)}) \ & \mathrm{Cost}(h_\theta(x),y) = -\log(h_\theta(x)) ; & \text{if y = 1} \ & \mathrm{Cost}(h_\theta(x),y) = -\log(1-h_\theta(x)) ; & \text{if y = 0} \end{align*} $$ 则有关于 J(θ) 的图像如下:

如左图,当训练集的结果为 y=1(正样本)时,随着假设函数趋向于 1,代价函数的值会趋于 0,即意味着拟合程度很好。如果假设函数此时趋于 0,则会给出一个很高的代价,拟合程度,算法会根据其迅速纠正 θ 值,右图 y=0 同理。

区别于平方损失函数,对数损失函数也是一个凸函数,但没有局部最优值。

6.5 简化的成本函数和梯度下降(Simplified Cost Function and Gradient Descent)

由于懒得分类讨论,对于二元分类问题,我们可把代价函数简化为一个函数: Cost(hθ(x),y)=−y×log(hθ(x))−(1−y)×log(1−hθ(x))

当 y=0,左边式子整体为 0,当 y=1,则 1−y=0,右边式子整体为0,也就和上面的分段函数一样了,而一个式子计算起来更方便。

J(θ)=−1m∑i=1m[y(i)log⁡(hθ(x(i)))+(1−y(i))log⁡(1−hθ(x(i)))]

向量化实现:

h=g(Xθ),$J(\theta) = \frac{1}{m} \cdot \left(-y^{T}\log(h)-(1-y)^{T}\log(1-h)\right)$

为了最优化 θ,仍使用梯度下降法,算法同线性回归中一致:

$$ \begin{align*} & \text{Repeat until convergence:} ; \lbrace \ &{{\theta }{j}}:={{\theta }{j}}-\alpha \frac{\partial }{\partial {{\theta }_{j}}}J\left( {\theta} \right) \ \rbrace \end{align*} $$

解出偏导得:

Repeat until convergence:;{θj:=θj−α1m∑i=1m(hθ(x(i))−y(i))⋅xj(i);for j := 0,1...n}

注意,虽然形式上梯度下降算法同线性回归一样,但其中的假设函不同,即$h_\theta(x) = g\left(\theta^{T}x \right)$,不过求导后的结果也相同。

向量化实现:$\theta := \theta - \frac{\alpha}{m} X^{T} (g(X \theta ) - y)$

逻辑回归中代价函数求导的推导过程: $$ J(\theta) = - \frac{1}{m} \displaystyle \sum_{i=1}^m [y^{(i)}\log (h_\theta (x^{(i)})) + (1 - y^{(i)})\log (1 - h_\theta(x^{(i)}))] $$ 令 f(θ)=y(i)log⁡(hθ(x(i)))+(1−y(i))log⁡(1−hθ(x(i)))

忆及 hθ(x)=g(z),$g(z) = \frac{1}{1+e^{(-z)}}$,则

f(θ)=y(i)log⁡(11+e−z)+(1−y(i))log⁡(1−11+e−z)=−y(i)log⁡(1+e−z)−(1−y(i))log⁡(1+ez)

忆及 z=θTx(i),对 θj 求偏导,则没有 θj 的项求偏导即为 0,都消去,则得:

$$ \frac{\partial z}{\partial {\theta_{j}}}=\frac{\partial }{\partial {\theta_{j}}}\left( \theta^Tx^{(i)} \right)=x^{(i)}_j $$ 所以有:

$$ \begin{align*} \frac{\partial }{\partial {\theta_{j}}}f\left( \theta \right)&=\frac{\partial }{\partial {\theta_{j}}}[-{{y}^{(i)}}\log \left( 1+{{e}^{-z}} \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1+{{e}^{z}} \right)] \ &=-{{y}^{(i)}}\frac{\frac{\partial }{\partial {\theta_{j}}}\left(-z \right) e^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{\frac{\partial }{\partial {\theta_{j}}}\left(z \right){e^{z}}}{1+e^{z}} \ &=-{{y}^{(i)}}\frac{-x^{(i)}_je^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{x^{(i)}_j}{1+e^{-z}} \ &=\left({{y}^{(i)}}\frac{e^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{1}{1+e^{-z}}\right)x^{(i)}_j \ &=\left({{y}^{(i)}}\frac{e^{-z}}{1+e^{-z}}-\left( 1-{{y}^{(i)}} \right)\frac{1}{1+e^{-z}}\right)x^{(i)}j \ &=\left(\frac{{{y}^{(i)}}(e^{-z}+1)-1}{1+e^{-z}}\right)x^{(i)}j \ &={({{y}^{(i)}}-\frac{1}{1+{{e}^{-z}}})x_j^{(i)}} \ &={\left({{y}^{(i)}}-{h\theta}\left( {{x}^{(i)}} \right)\right)x_j^{(i)}} \ &=-{\left({h\theta}\left( {{x}^{(i)}} \right)-{{y}^{(i)}}\right)x_j^{(i)}} \end{align*} $$

则可得代价函数的导数:

∂∂θjJ(θ)=−1m∑i=1m∂∂θjf(θ)=1m∑i=1m(hθ(x(i))−y(i))⋅xj(i)

6.6 进阶优化(Advanced Optimization)

运行梯度下降算法,其能最小化代价函数 J(θ) 并得出 θ 的最优值,在使用梯度下降算法时,如果不需要观察代价函数的收敛情况,则直接计算 J(θ) 的导数项即可,而不需要计算 J(θ) 值。

我们编写代码给出代价函数及其偏导数然后传入梯度下降算法中,接下来算法则会为我们最小化代价函数给出参数的最优解。这类算法被称为最优化算法(Optimization Algorithms),梯度下降算法不是唯一的最小化算法[^1]。

一些最优化算法:

  • 梯度下降法(Gradient Descent)
  • 共轭梯度算法(Conjugate gradient)
  • 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods)
    • DFP算法
    • 局部优化法(BFGS)
    • 有限内存局部优化法(L-BFGS)
  • 拉格朗日乘数法(Lagrange multiplier)

比较梯度下降算法:一些最优化算法虽然会更为复杂,难以调试,自行实现又困难重重,开源库又效率也不一,哎,做个调包侠还得碰运气。不过这些算法通常效率更高,并无需选择学习速率 α(少一个参数少一份痛苦啊!)。

Octave/Matlab 中对这类高级算法做了封装,易于调用。

假设有 J(θ)=(θ1−5)2+(θ2−5)2,要求参数 $\theta=\begin{bmatrix} \theta_1\\theta_2\end{bmatrix}$的最优值。

下面为 Octave/Matlab 求解最优化问题的代码实例:

  1. 创建一个函数以返回代价函数及其偏导数:
function [jVal, gradient] = costFunction(theta)
  % code to compute J(theta)
  jVal=(theta(1)-5)^2+(theta(2)-5)^2;

  % code to compute derivative of J(theta)
  gradient=zeros(2,1);
  
  gradient(1)=2*(theta(1)-5);
  gradient(2)=2*(theta(2)-5);
end
  1. 将 costFunction 函数及所需参数传入最优化函数 fminunc,以求解最优化问题:
options = optimset('GradObj', 'on', 'MaxIter', 100);
initialTheta = zeros(2,1);
   [optTheta, functionVal, exitFlag] = fminunc(@costFunction, initialTheta, options);

'GradObj', 'on': 启用梯度目标参数(则需要将梯度传入算法)

'MaxIter', 100: 最大迭代次数为 100 次

@xxx: Octave/Matlab 中的函数指针

optTheta: 最优化得到的参数向量

functionVal: 引用函数最后一次的返回值

exitFlag: 标记代价函数是否收敛

注:Octave/Matlab 中可以使用 help fminunc 命令随时查看函数的帮助文档。

  1. 返回结果
optTheta =

     5
     5

functionVal = 0

exitFlag = 1

6.7 多类别分类: 一对多(Multiclass Classification: One-vs-all)

一直在讨论二元分类问题,这里谈谈多类别分类问题(比如天气预报)。

原理是,转化多类别分类问题为多个二元分类问题,这种方法被称为 One-vs-all。

正式定义:$h_\theta^{\left( i \right)}\left( x \right)=p\left( y=i|x;\theta \right), i=\left( 1,2,3....k \right)$

hθ(i)(x): 输出 y=i(属于第 i 个分类)的可能性

k: 类别总数,如上图 k=3。

注意多类别分类问题中 hθ(x) 的结果不再只是一个实数而是一个向量,如果类别总数为 k,现在 hθ(x) 就是一个 k 维向量。

对于某个样本实例,需计算所有的 k 种分类情况得到 hθ(x),然后看分为哪个类别时预测输出的值最大,就说它输出属于哪个类别,即 y=maxi,hθ(i)(x)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaoshun007~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值