连连看
题目描述:
“连连看”相信很多人都玩过。没玩过也没关系,下面我给大家介绍一下游戏规则:在一个棋盘中,放了很多的棋子。如果某两个相同的棋子,可以通过一条线连起来(这条线不能经过其它棋子),而且线的转折次数不超过两次,那么这两个棋子就可以在棋盘上消去。不好意思,由于我以前没有玩过连连看,咨询了同学的意见,连线不能从外面绕过去的,但事实上这是错的。现在已经酿成大祸,就只能将错就错了,连线不能从外围绕过。
玩家鼠标先后点击两块棋子,试图将他们消去,然后游戏的后台判断这两个方格能不能消去。现在你的任务就是写这个后台程序。
Input:
输入数据有多组。每组数据的第一行有两个正整数n,m(0<n<=1000,0<m<1000),分别表示棋盘的行数与列数。在接下来的n行中,每行有m个非负整数描述棋盘的方格分布。0表示这个位置没有棋子,正整数表示棋子的类型。接下来的一行是一个正整数q(0<q<50),表示下面有q次询问。在接下来的q行里,每行有四个正整数x1,y1,x2,y2,表示询问第x1行y1列的棋子与第x2行y2列的棋子能不能消去。n=0,m=0时,输入结束。
注意:询问之间无先后关系,都是针对当前状态的!
Output:
每一组输入数据对应一行输出。如果能消去则输出"YES",不能则输出"NO"。
Sample Input:
Sample Output:
思路分析:
这道题没多少要求,只要求能有地方能走,并且只能走在数字为0的地方,并且转向不能超过2,这里要防止几点。一:如果所给的初始位置与终点位置都是0,不满足条件。二:如果所给的初始位置和终点位置都一样,也不满足条件。三:如果给的位置过大过小,不满足条件,退
四:刚好转向为2次,但位置不是终点也不满足条件。五:转向超过2次的都不满足条件。
AC代码:
用时:9006ms(第一次这么长,要剪枝了)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string.h>
using namespace std;
int map[1100][1100];//记录地图位置
int Map[1100][1100];//标记位置是否走过
int b,c,e;
int dir[4][2]={{1,0},{0,1},{-1,0},{0,-1}};//方向变量
int x2,y2,x3,y3;//初始位置与终点位置
int flag;//标记是否能走到 终点
int LemonJudge(int x,int y)//判断位置与边界
{
if(x<=0 || y<=0 || x>b || y>c || Map[x][y])
{
return 1;
}
return 0;
}
void LemonScanf()//输入地图
{
int d,g;
for(d=1;d<=b;d++)
{
for(g=1;g<=c;g++)
{
scanf("%d",&map[d][g]);
}
}
}
void LemonDFS(int x1,int y1,int n,int turn)
{
int x,y,i;
if(turn>2 || flag)//如果转向大于2或者已经达到目的
return;
if(x1==x2 && y1==y2 && turn<=2)//如果转向小于或等于2,并且走到终点,就标记成功
{
flag=1;
return;
}
for(i=0;i<4;i++)
{
x=x1+dir[i][0];
y=y1+dir[i][1];
if(LemonJudge(x,y))
continue;
if(map[x][y]==0 || (x==x2&& y==y2))//这里要多判断一下这个位置
{
Map[x][y]=1;
if(n==-1 || n==i)
{
LemonDFS(x,y,i,turn);
}
else
{
LemonDFS(x,y,i,turn+1);
}
if(flag)//剪枝,缩短时间
return;
else
Map[x][y]=0;
}
}
return;
}
int main()
{
while(scanf("%d %d",&b,&c)!=EOF)
{
if(b==0 && c==0)break;
memset(map,0,sizeof(map));
LemonScanf();
cin >> e;
while(e--)
{
cin >> x3 >> y3 >> x2 >> y2;
flag=0;//标记是否能走到
if(map[x3][y3]!=map[x2][y2] || map[x3][y3]==0 || map[x2][y2]==0 && (x2==x3 && y2==y3))
{
flag=0;
}
else
{
memset(Map,0,sizeof(Map));
LemonDFS(x3,y3,-1,0);
}
if (flag)
cout << "YES" << endl;
else
cout << "NO" << endl;
}
}
return 0;
}