线性代数09 特征值与特征向量

在上一节我们提出了对于矩阵求幂的运算,关键在于找到一个可逆矩阵P,使得A可以化成对角矩阵D。而这个逆矩阵能否找到,就在于能不能找到n个线性无关的向量满足: A a i = λ i a i Aa_{i}=\lambda_{i}a_{i} Aai=λiai

对于这个式子,我们引入了一个专门的概念来求解这其中的λ和列向量。

1 特征值与特征向量

如果对于矩阵A来说,有非零列向量使得:
A a = λ 0 a   那 么 我 们 称 λ 0 是 A 的 一 个 特 征 值 , 列 向 量 a 是 A 的 对 应 于 λ 0 的 一 个 特 征 向 量 Aa=\lambda_{0}a \\ \ \\ 那么我们称\lambda_{0}是A的一个特征值,列向量a是A的对应于\lambda_{0}的一个特征向量 Aa=λ0a λ0AaAλ0

2 特征值/特征向量的求法

对公式进行以下变换:
A a = λ 0 a = > A a − λ 0 a = 0 = > A a − λ 0 I a = 0 = > a ( A − λ 0 I ) = 0 Aa=\lambda_{0}a \\=>Aa-\lambda_{0}a=0\\=>Aa-\lambda_{0}Ia=0\\=>a(A-\lambda_{0}I)=0 Aa=λ0a=>Aaλ0a=0=>Aaλ0Ia=0=>a(Aλ0I)=0
对以上这个式子来说,要么a=0,要么A−λ0I=0.由于我们限定了a不能为零向量,那么对于
( A − λ 0 I ) = 0 两 边 同 时 取 行 列 式 ∣ ( A − λ 0 I ) ∣ = 0 (A-\lambda_{0}I)=0\\两边同时取行列式|(A-\lambda_{0}I)|=0 (Aλ0I)=0(Aλ0I)=0
即λ是满足以上等式的一个解,同时,若我们将λ求出,代入原式,则向量a则是线性方程组:
( A − λ 0 I ) = 0 (A-\lambda_{0}I)=0 (Aλ0I)=0的非零解,且,有多少个特征值,就有多少个特征向量。

3 求解实例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 总结

由特征值和特征向量的定义和求解方式,我们可以知道,n阶矩阵A可对角化的充分必要条件是A有n个线性无关的特征向量。此时我们要找的可逆矩阵P符合:
P = [ a 1 , a 2 . . . . . a n ] P=[a_{1},a_{2}.....a_{n}] P=[a1,a2.....an]
所以也有:
P − 1 A P = d i a g { λ 1 , λ 2 . . . . . λ n } P^{-1}AP=diag\{\lambda_{1},\lambda_{2}.....\lambda_{n}\} P1AP=diag{λ1,λ2.....λn}

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值