要求:
(1)掌握数据结构与算法
(2)python或c++
(3)linux
(4)tensorflow或pytorch框架
(5)图像分类检测分割项目经历
(6)深度学习基本原理,前沿算法
高级:
(1)模型剪枝
(2)知识蒸馏
(3)分布式部署
公司想要什么样的人:
(1)自我介绍清晰,重点突出,1分钟半
(2)比较机灵,逻辑思维能力强;
(3)有礼貌,互动起来流畅;
(4)自信,对自己有信心,自己要认为自己配得上公司,不要胆怯紧张;
(5)专业知识功底扎实,大学研究生期间一直在做这些事情;
(6)能把题作对,作题不要着急,先有思路再编程。
面试问题
1 自我介绍
1.1 先来几句自我介绍
1.2 项目经验
2 技术
2.1 深度学习的各种模型
2.2 深度学习的各种知识点
2.2.1 损失值调参技巧
2.2.2 各种激活函数
2.2.3 各种损失函数(推导)
2.2.4 优化器
2.2.5 小目标检测
2.2.6 卷积,池化,分组卷积等
2.2.7 梯度消失和梯度爆炸的区别
2.2.8 欠拟合过拟合
2.2.9 优化技巧
(1)BN层,(8条消息) Batch Normalization详解和momentum参数理解_ygfrancois的博客-CSDN博客_batchnormalization参数
https://blog.csdn.net/ygfrancois/article/details/90382459