美式期权定价方法之最小二乘蒙特卡洛模拟(LSM)

22 篇文章 ¥299.90 ¥399.90
本文介绍了美式期权及其与欧式期权的区别,并重点讲解了最小二乘蒙特卡洛(LSM)方法在美式期权定价中的应用。通过Python代码实现了LSM算法,展示了美式期权与欧式期权的价格对比,揭示了美式期权的提前行权溢价现象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

美式期权定价方法之最小二乘蒙特卡洛模拟

前言

前文对欧式期权的蒙特卡洛模拟定价方法进行了介绍和python量化,本章节主要是对前一章节的补充。也就是介绍美式期权的蒙特卡洛定价方法。

一、美式期权

不同于欧式期权,美式期权合约的行权时间是不固定的。

美式期权(American option)是指可以在成交后有效期内任何一天被执行的期权。也就是指期权持有者可以在期权到期日以前的任何一个工作日,选择执行或不执行期权合约。

美式期权允许期权持有者在到期日或到期日前执行购买(如果是看涨期权)或出售(如果是看跌期权)标的资产的权利。

二、LSM定价方法

蒙特卡洛模拟作为灵活而有力的数值方法,其本身不适合解决美式期权或者百慕大期权的定价问题。学者Longstaff和Schwarta提出了最小二乘蒙特卡洛模拟方法(Least-Squares Monte Carlo,LSM),成为了美式期权定价的经典方法。

下面对LSM方法进行python实现,代码如下:

# 美式期权定价(最小二乘蒙特卡洛模拟法,LSM)
S0</
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马尔可夫宽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值