美式期权定价方法之最小二乘蒙特卡洛模拟
前言
前文对欧式期权的蒙特卡洛模拟定价方法进行了介绍和python量化,本章节主要是对前一章节的补充。也就是介绍美式期权的蒙特卡洛定价方法。
一、美式期权
不同于欧式期权,美式期权合约的行权时间是不固定的。
美式期权(American option)是指可以在成交后有效期内任何一天被执行的期权。也就是指期权持有者可以在期权到期日以前的任何一个工作日,选择执行或不执行期权合约。
美式期权允许期权持有者在到期日或到期日前执行购买(如果是看涨期权)或出售(如果是看跌期权)标的资产的权利。
二、LSM定价方法
蒙特卡洛模拟作为灵活而有力的数值方法,其本身不适合解决美式期权或者百慕大期权的定价问题。学者Longstaff和Schwarta提出了最小二乘蒙特卡洛模拟方法(Least-Squares Monte Carlo,LSM),成为了美式期权定价的经典方法。
下面对LSM方法进行python实现,代码如下:
# 美式期权定价(最小二乘蒙特卡洛模拟法,LSM)
S0</