朴素贝叶斯(二)模型、推导、拉普拉斯平滑

本文详细介绍了朴素贝叶斯模型,包括模型定义、贝叶斯定理、条件独立假设及其优缺点。讨论了先验概率、条件概率的极大似然估计,并提出了拉普拉斯平滑来解决训练集中属性值与类别未同时出现的问题,以避免概率为0的情况。
摘要由CSDN通过智能技术生成

1 朴素贝叶斯模型

下面我们先来看变量表示

  • 变量表示
    • 输入变量表示为X–m维向量的集合(m个特征);
    • 输出空间为类标记集合表示为 Y = { c 1 . c 2 , . . . , c K } Y=\{c_1.c_2,...,c_K\} Y={ c1.c2,...,cK};
    • 训练集为 { ( x 1 , y 1 ) . ( x 2 , y 2 ) , . . . , ( x n , y n ) } \{(x_1,y_1).(x_2,y_2),...,(x_n,y_n)\} { (x1,y1).(x2,y2),...,(xn,yn)}(n个样本),特征向量 x i x_i xi(第i个样本)可以表示为 x i = ( x i 1 , x i 2 , . . . , x i m ) T x_i=(x_i^1,x_i^2,...,x_i^m)^T xi=(xi1,xi2,...,xim)T,其中 x i j x_i^j xij表示为第i个输入变量的第j个特征。

接着介绍几个概念。

  • 先验概率分布
    P ( Y = c k ) , k = 1 , 2 , . . . , K P(Y=c_k),k=1,2,...,K P(Y=ck),k=1,2,...,K
  • 条件概率分布
    P ( X = x ∣ Y = c k ) = P ( X 1 = x 1 , X 2 = x 2 , . . . , X m = x m ∣ Y = c k ) , k = 1 , 2 , . . . , K P(X=x|Y=c_k)=P(X^1=x^1,X^2=x^2,...,X^m=x^m|Y=c_k),k=1,2,...,K P(X=xY=ck)=P(X1=x1,X2=x2,...,Xm=xmY=ck),k
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值