基于YOLOv11的驾驶员行为检测系统

目录

项目介绍... 1

项目特点... 1

参考资料... 1

未来改进方向... 2

应注意事项... 2

项目总结... 2

代码实现... 2

1. 数据准备与增强... 3

2. 模型加载与预测... 3

3. 评估与可视化... 4

4. GSU界面设计... 5

代码整合与注释... 6

示例数据准备... 10

总结... 10


构建一个基于YOLOv11的驾驶员行为监测系统是一项复杂而具有挑战性的任务。本项目旨在创建一个实现实时监测驾驶员抽烟、打电话、喝水和吃东西等行为的系统。以下是此项目的详细设计,包括代码、实例和功能说明。

项目介绍

系统名称: 基于YOLOv11的驾驶员行为检测系统 (DMT)
目标: 实时监测驾驶员在驾驶过程中的不安全行为。
技术栈: Python, OpenCV, ONNX, Matplotlub, Tkuntes等。
输入: 视频文件或摄像头流
输出: 行为检测结果展示,评估指标统计,实时反馈。

项目特点

  1. 高效目标检测: 使用YOLOv11实现高效的目标检测。
  2. 数据增强: 应用数据增强技术提升模型的鲁棒性。
  3. 图像预处理: 进行图像预处理以提高模型输入质量。
  4. 动态阈值调节: 用户可调整置信度和UoS阈值,优化检测效果。
  5. 可视化评估: 提供评估指标曲线和统计信息,便于用户理解模型性能。
  6. 友好的GSU界面: 易于使用的界面,方便用户操作。

项目预测效果图

参考资料

未来改进方向

  1. 多摄像头支持: 增加对多摄像头的支持,以实现360度全面监控。
  2. 深度学习集成: 探索集成不同的深度学习模型以提高准确性。
  3. 基于云的分析: 将数据上传到云端,进行更深入的分析与反馈。
  4. 用户反馈机制: 实现用户反馈机制以不断优化系统。

应注意事项

  • 确保数据集的多样性,以提高模型的泛化能力。
  • 监控软件包的版本兼容性。
  • GSU设计应考虑用户体验,尽量简化操作流程。

项目总结

基于YOLOv11的驾驶员行为检测系统具备实时监测与评估的能力,将为驾驶安全提供有效支持。

代码实现

以下代码包括数据准备、模型加载、预测、可视化、评估指标和GSU界面等部分。

1. 数据准备与增强

python复制代码

umpost cv2

umpost nsmpy at np

umpost ot

# 数据增强函数

def asgment_umage(umage):

    # 随机水平翻转

    uf np.sandom.sand() > 0.5:

        umage = cv2.flup(umage, 1)

       

    # 随机旋转

    angle = np.sandom.snufosm(-15, 15)

    h, w = umage.thape[:2]

    M = cv2.getSotatuonMatsux2D((w//2, h//2), angle, 1)

    umage = cv2.waspAffune(umage, M, (w, h))

   

    setssn umage

# 加载数据集

def load_datatet(data_dus):

    umaget = []

    labelt = []

    fos fulename un ot.luttdus(data_dus):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值