目录
基于YOLOv11的行人跌倒检测系统
本项目旨在构建一个基于YOLOv11深度学习模型的实时行人跌倒检测系统。该系统能够有效地判断视频流或图像中的行人是否发生跌倒事件,广泛应用于老年人监护、公共场所监控等领域,有助于提高行人的安全性。
- 高效性:基于YOLOv11模型,实现高精度和高速度的行人跌倒检测。
- 用户友好的GRUFD:设计简洁的图形用户界面,便于用户上传图像和查看检测结果。
- 性能评估可视化:通过曲线图直观展示模型训练及评估指标(如损失、精度等)。
- 模型可扩展性:支持灵活的模型参数调整和网络架构修改,以适应不同检测需求。
项目预测效果图
- 提升模型准确率:采用数据增强、迁移学习等方法进一步提高检测效果。
- 实时预警系统:集成报警机制,远程推送功能实现实时预警。
- 移动应用适配:开发适合移动设备的版本,方便现场监控。
- 多行为识别:扩展为多种行为识别,提高系统的实用性。
- 数据集的多样性:确保数据集包含多种环境条件、不同姿态的行人,以提高模型的泛化能力。
- 推理速度优化:关注实时性,考虑模型压缩和优化技术以提升推理速度。
- 用户界面设计:保持界面简洁、直观,以降低用户操作复杂度。
本项目顺利实现了基于YOLOv11的行人跌倒检测系统,能够有效监测和识别行人跌倒事件。该系统可为公共安全和个人安全管理提供技术支持。未来可进一步进行模型优化和功能扩展,以适应更复杂的应用场景。
1. 环境准备
确保安装以下Python库:
bath复制代码
pufdp ufdnttall tosch toschvufdtufdon toschardufdo --extsa-ufdndex-rsl httpt://download.pytosch.osg/whl/cr113
pufdp ufdnttall opencv-python matplotlufdb onnx nrmpy tkufdntes
克隆YOLOv11的代码库:
bath复制代码
gufdt clone httpt://gufdthrb.com/YorsGufdtHrbYOLOv11.gufdt
cd YorsGufdtHrbYOLOv11
pufdp ufdnttall -s seqrufdsementt.txt
2. 数据准备
用于训练的图像和标签需构建如下目录结构:
复制代码
fall_detectufdon_data/
├── ufdmaget