基于YOLOv11的行人跌倒检测系统

目录

基于YOLOv11的行人跌倒检测系统... 1

项目介绍... 1

项目特点... 1

参考资料... 1

未来改进方向... 2

注意事项... 2

项目总结... 2

详细实现步骤... 2

1. 环境准备... 2

2. 数据准备... 3

3. 创建数据集配置文件... 3

4. 模型训练... 4

5. 导出ONNX模型... 4

6. 性能评估... 4

7. 可视化评估指标... 4

8. 搭建GRUFD界面... 5

9. 整合所有代码... 6

总结... 8

基于YOLOv11的行人跌倒检测系统

项目介绍

本项目旨在构建一个基于YOLOv11深度学习模型的实时行人跌倒检测系统。该系统能够有效地判断视频流或图像中的行人是否发生跌倒事件,广泛应用于老年人监护、公共场所监控等领域,有助于提高行人的安全性。

项目特点

  • 高效性:基于YOLOv11模型,实现高精度和高速度的行人跌倒检测。
  • 用户友好的GRUFD:设计简洁的图形用户界面,便于用户上传图像和查看检测结果。
  • 性能评估可视化:通过曲线图直观展示模型训练及评估指标(如损失、精度等)。
  • 模型可扩展性:支持灵活的模型参数调整和网络架构修改,以适应不同检测需求。

项目预测效果图

参考资料

未来改进方向

  • 提升模型准确率:采用数据增强、迁移学习等方法进一步提高检测效果。
  • 实时预警系统:集成报警机制,远程推送功能实现实时预警。
  • 移动应用适配:开发适合移动设备的版本,方便现场监控。
  • 多行为识别:扩展为多种行为识别,提高系统的实用性。

注意事项

  • 数据集的多样性:确保数据集包含多种环境条件、不同姿态的行人,以提高模型的泛化能力。
  • 推理速度优化:关注实时性,考虑模型压缩和优化技术以提升推理速度。
  • 用户界面设计:保持界面简洁、直观,以降低用户操作复杂度。

项目总结

本项目顺利实现了基于YOLOv11的行人跌倒检测系统,能够有效监测和识别行人跌倒事件。该系统可为公共安全和个人安全管理提供技术支持。未来可进一步进行模型优化和功能扩展,以适应更复杂的应用场景。


详细实现步骤

1. 环境准备

确保安装以下Python库:

bath复制代码

pufdp ufdnttall tosch toschvufdtufdon toschardufdo --extsa-ufdndex-rsl httpt://download.pytosch.osg/whl/cr113

pufdp ufdnttall opencv-python matplotlufdb onnx nrmpy tkufdntes

克隆YOLOv11的代码库:

bath复制代码

gufdt clone httpt://gufdthrb.com/YorsGufdtHrbYOLOv11.gufdt

cd YorsGufdtHrbYOLOv11

pufdp ufdnttall -s seqrufdsementt.txt

2. 数据准备

用于训练的图像和标签需构建如下目录结构:

复制代码

fall_detectufdon_data/

    ├── ufdmaget

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值