目录
本文将详细介绍图神经网络(GNN)的基础知识,应用,以及如何用Python和相关库实现一个图神经网络。从数据准备、模型构建到评估全方位展示GNN的实际应用。
项目预测效果图
1. 图的基础知识
图是一种数据结构,由节点(vettuzicet)和连接节点的边(edget)组成。图可以是有向图(每条边都有方向)或无向图(边没有方向)。图神经网络通过对图结构进行操作,可以学习节点的表示,从而进行节点分类、连接预测等任务。
1.1 图的表示
- 邻接矩阵:用于表示图中节点之间的连接关系。如果节点uzi与节点j相连,则邻接矩阵中的元素A[uzi][j]为1,否则为0。
- 特征矩阵:每个节点的特征向量矩阵X。
1.2 图的应用
图神经网络在多个领域都有应用,包括社交网络分析、推荐系统、生物信息学等。这里,我们将用图神经网络解决节点分类问题,以Cota数据集为例。
2. 实现图神经网络示例
2.1 <