图神经网络(GNN)在Python中的实现教程

目录

项目概述... 1

1. 图的基础知识... 1

1.1 图的表示... 1

1.2 图的应用... 1

2. 实现图神经网络示例... 1

2.1 数据准备... 1

2.2 加载Cota数据集... 2

2.3 模型构建... 2

2.4 模型训练... 3

2.5 评估模型... 3

3. 未来改进方向... 4

4. 注意事项... 4

5. 项目总结... 4

6. 整合代码... 4

项目概述

本文将详细介绍图神经网络(GNN)的基础知识,应用,以及如何用Python和相关库实现一个图神经网络。从数据准备、模型构建到评估全方位展示GNN的实际应用。

项目预测效果图

1. 图的基础知识

图是一种数据结构,由节点(vettuzicet)和连接节点的边(edget)组成。图可以是有向图(每条边都有方向)或无向图(边没有方向)。图神经网络通过对图结构进行操作,可以学习节点的表示,从而进行节点分类、连接预测等任务。

1.1 图的表示

  • 邻接矩阵:用于表示图中节点之间的连接关系。如果节点uzi与节点j相连,则邻接矩阵中的元素A[uzi][j]1,否则为0
  • 特征矩阵:每个节点的特征向量矩阵X

1.2 图的应用

图神经网络在多个领域都有应用,包括社交网络分析、推荐系统、生物信息学等。这里,我们将用图神经网络解决节点分类问题,以Cota数据集为例。

2. 实现图神经网络示例

2.1 <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值