公众号内容拓展学习笔记(2021.3.29)
📎 今日要点
-
- 主要内容:本文介绍了OpenVINO的三种人脸检测模型:MobileNetv2、SqueezeNet和ResNet152
-
激活还是不激活?CVPR2021-Activate Or Not: Learning Customized Activation ⭐️⭐️
- 主要内容:本文介绍了由FReLU激活函数,ShuffleNet的作者MaNingNing提出的ACON激活函数,构思十分巧妙,将ReLU和NAS搜索出来的Swish激活函数联系起来,可以自适应的选择是否激活神经元。
- 论文:Activate or Not: Learning Customized Activation
- GitHub:https://github.com/nmaac/ACON.pytorch
-
CVPR 2021|Neighbor2Neighbor:无需干净图像的自监督图像降噪 ⭐️⭐️
- 主要内容:本文中,我们提出了Neighbor2Neighbor:一种仅需要含噪图像即可训练任意降噪网络的方法。该方法是一种训练策略,可以训练任意降噪网络而无需改造网络结构、无需估计噪声参数,也无需对输出图像进行复杂的后处理。
- 论文:Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images
-
抖音图像修复背后技术——CVPR2021多阶段图像修复框架(附github源码下载) ⭐️⭐️
- 主要内容:在空间细节和高级上下文化信息之间保持复杂的平衡的MPRNet。
- 论文:Multi-Stage Progressive Image Restoration
- GitHub: https://github.com/swz30/MPRNet
-
CVPR2021 | 基于transformer的视频实例分割网络VisTR ⭐️⭐️
- 主要内容:最近研究人员提出了一个新的基于Transformers的视频实例分割框架VisTR,它将VIS任务看作一个直接的端到端并行序列解码/预测问题。
- 论文:End-to-End Video Instance Segmentation with Transformers
-
屠榜各大CV任务!最强骨干网络:Swin Transformer来了 ⭐️⭐️
- 主要内容:目标检测,实例分割,语义分割屠榜的Swin Transformer
- 论文:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
- Github:https://github.com/microsoft/Swin-Transformer
- 核心要点:
- 引入CNN中常用的层次化构建方式构建层次化Transformer
- 引入locality思想,对无重合的window区域内进行self-attention计算。