【人工智能】半监督学习算法

目录

一、半监督学习算法概述

二、半监督学习算法分类

三、半监督学习算法应用

四、半监督学习算法发展趋势


一、半监督学习算法概述

        半监督学习算法是一种机器学习方法,它结合了有监督学习和无监督学习的特点。在半监督学习中,算法利用少量的标记数据和大量的未标记数据进行学习。这种方法特别适用于那些获取大量标记数据成本高昂或困难的情况。

        半监督学习算法的核心思想是,未标记数据中蕴含着丰富的结构信息,这些信息可以辅助模型更好地理解数据的分布,从而提高学习性能。半监督学习通常假设标记数据和未标记数据来自相同的分布,因此通过学习未标记数据的分布,可以对未标记数据进行有效的预测。

二、半监督学习算法分类

        半监督学习算法可以分为几类:

        1. 基于生成的方法:这类方法假设数据是由一个概率模型生成的,学习的目标是找到这个模型的参数。一旦模型被确定,就可以用它来对未标记数据进行标记,然后使用标准的监督学习方法进行训练。

        2. 基于半监督支持向量机(S3VMs):这类方法尝试找到一个决策边界,它不仅能够正确分类标记数据,而且

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大雨淅淅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值