目录
一、半监督学习算法概述
半监督学习算法是一种机器学习方法,它结合了有监督学习和无监督学习的特点。在半监督学习中,算法利用少量的标记数据和大量的未标记数据进行学习。这种方法特别适用于那些获取大量标记数据成本高昂或困难的情况。
半监督学习算法的核心思想是,未标记数据中蕴含着丰富的结构信息,这些信息可以辅助模型更好地理解数据的分布,从而提高学习性能。半监督学习通常假设标记数据和未标记数据来自相同的分布,因此通过学习未标记数据的分布,可以对未标记数据进行有效的预测。
二、半监督学习算法分类
半监督学习算法可以分为几类:
1. 基于生成的方法:这类方法假设数据是由一个概率模型生成的,学习的目标是找到这个模型的参数。一旦模型被确定,就可以用它来对未标记数据进行标记,然后使用标准的监督学习方法进行训练。
2. 基于半监督支持向量机(S3VMs):这类方法尝试找到一个决策边界,它不仅能够正确分类标记数据,而且