一、本研究,提出了一种上下文感知的无处不在的学习方法,在计算机组装课程的学习活动中为个别学生提供即时帮助。参与者是两个班级的二年级学生,平均年龄为17岁。一类被分配为实验组(N =39),另一类是对照组(N =39)。两组都获得了相同的计算机组装学习材料,但使用了不同的教学媒体和策略。
实验过程
图1显示了本研究的实验设计。
图2显示了上下文感知无处不在的学习系统的结构
结果:
表1显示了实验组和对照组计算机组装知识的测试结果。实验组和对照组的平均测试前分数分别为36.69和37.18。测试前分数的t测试显示,两组之间没有显著差异。完成计算机组装学习活动后,实验组计算机组装学科知识的平均分数比对照组高出6分。
组别 | 数量 | 平均数 | 标准偏差 | |
测试前 | 控制组 | 39 | 37.18 | 7.94 |
实验组 | 39 | 36.64 | 9.105 | |
测试后 | 控制组 | 39 | 62.08 | 9.75 |
实验组 | 39 | 68.02 | 11.32 |
计算机组装性能
除了学科知识的预测试和测试后外,学生在完成课程后还参加了计算机组装竞赛,以检查操作结果,这提出了本课程的目标,即能够组装分散的组件以成功开机。研究发现,实验组平均花费21.22分钟完成计算机组装任务,而对照组花费24.20分钟。学生的集合速度被进一步排序;前19名学生被归类为高成绩优异者,其余20名学生被归类为低成绩优异者。从表2可以看出,了解上下文的无处不在的学习方法可以显著提高低成就的计算机组装性能
实验组 | 对照组 | ||||||
数量 | 平均数 | 标准方差 | 数量 | 平均数 | 标准方差 | t | |
Q1 | 39 | 4.181 | 0.5933 | 39 | 3.841 | 0.7654 | 2.192 |
Q2 | 39 | 3.961 | 0.5603 | 39 | 3.745 | 0.766 | 1.421 |
Q3 | 39 | 3.94 | 0.6341 | 39 | 3.2305 | 0.894 | 4.080 |
Q4 | 39 | 4.004 | 0.8452 | 39 | 3.3833 | 0.769 | 3.531 |
Q5 | 39 | 4.0487 | 0.6360 | 39 | 3.7346 | 0.738 | 1.849 |
认知方式 | 数量 | 平均数 | 标准方差 | t | |
预备考试 | FD | 20 | 36.05 | 5.80 | 0.386 |
FI | 19 | 35.22 | 7.616 | ||
试验后 | FD | 20 | 70.705 | 12.317 | 1.729 |
FI | 19 | 65.74 | 9.243 | ||
PCDIY性能 | FD | 20 | 25.38 | 9.4024 | 3.317 |
FI | 19 | 16.64 | 6.7589 | ||
精神负担 | FD | 20 | 2.721 | 0.8214 | 2.267 |
FI | 19 | 2.074 | 0.747 | ||
脑力 | FD | 20 | 2.88 | 0.96 | 2.509 |
FI | 19 | 2.2578 | 0.7323 | ||
FD | 20 | 4.48 | 0.652 | -3.266 | |
FI | 19 | 5.0621 | 0.516 | ||
有使用pda进行学习的经验 | FD | 20 | 4.031 | 0.6090 | -3.156 |
FI | 19 | 4.83 | 0.938 | ||
对SMUL系统的感受 | FD | 20 | 4.65 | 0.6594 | -0.52 |
FI | 19 | 5.0874 | 0.7087 | ||
对学习方法的满意度 | FD | 20 | 4.3515 | 0.5817 | -1.631 |
FI | 19 | 4.9842 | 0.7332 |
收获:
1.知道了SD是标准方差并知道了如何计算。
2.通过反复的t检验发现:
①若实验组的平均数大于对照组t检验结果为正,反之则为负。(大小颠倒后数据相同,只是有正负之分)
②两组间平均数差距越大,t检验的数值越大
问题:
两组数据的数量不一样,一个19一个20对独立样本t 检验是否有影响?