DeepSeek 2025年2月16日最新NSA论文解读:硬件适配且可原生训练的原生稀疏注意力机制

《Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention》提出了一种新型的稀疏注意力机制,旨在解决传统Transformer模型在处理长序列时面临的计算和内存瓶颈。其核心方案结合了硬件优化设计和可训练性,以下是其方案与技术的详细解读:

核心方案

  1. 硬件对齐的稀疏模式设计

    • 块状稀疏结构:将注意力矩阵划分为规则的块(如2x2或4x4的块),仅保留部分块的非零权重。这种结构与GPU/Tensor Core的矩阵计算单元对齐,能够利用硬件的并行计算能力,减少内存碎片和随机访问开销。
    • 内存连续性优化:通过预定义稀疏块的位置(如对角线附近的块或均匀间隔的块),确保非零元素在内存中连续存储,提升内存带宽利用率。
  2. 原生可训练性

    • 端到端训练:稀疏模式无需预训练或固定掩码,直接通过反向传播优化。稀疏权重在训练过程中动态调整,避免了传统稀疏方法中因固定模式导致的性能损失。
    • 可微稀疏门控:引入可学习的门控参数(如Gumbel-Softmax),控制每个块的激活状态,使模型能够自动学习最优的稀疏结构。
  3. 动态稀疏自适应

    • 输入相关的稀疏调整:根据输入序列的内容动态调整稀疏块的分布(如关注局部细节或全局依赖),平衡计算效率与模型表达能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硅基创想家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值