VAE vs GAN

AutoEncoder

Limitations of autoencoders for content generation

At this point, a natural question that comes in mind is “what is the link between autoencoders and content generation?”. Indeed, once the autoencoder has been trained, we have both an encoder and a decoder but still no real way to produce any new content. At first sight, we could be tempted to think that, if the latent space is regular enough (well “organized” by the encoder during the training process), we could take a point randomly from that latent space and decode it to get a new content. The decoder would then act more or less like the generator of a Generative Adversarial Network.

转自:

VAE : https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

GAN: https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值