VAE与GAN的关系(1)

本文介绍了VAE(变分自编码器)和GAN(生成对抗网络)的基本原理和工作流程,强调它们都是用于生成样本的模型。VAE通过编码器和解码器学习数据分布,而GAN通过生成器和判别器的竞争实现样本生成。文章还探讨了GAN的模型坍塌和不收敛问题,并指出GAN的生成效果通常优于VAE,但训练难度更高。
摘要由CSDN通过智能技术生成

VAE(Variational Auto-Encoder)和GAN(Ganerative Adversarial Networks)都是生成模型(Generative model)。所谓生成模型,即能生成样本的模型。我们可以将训练集中的数据点看作是某个随机分布抽样出来的样本,比如:MNIST手写体样本,我们就可将每一幅图像看作是一个随机分布 p(x) p ( x ) 的抽样(实例)。如果我们能够得到这样的一个随机模型,我们就可以无限制地生成样本,再无采集样本的烦恼。但这个随机分布 p(x) p ( x ) 我们并不知道,需要通过对训练集的学习来得到它,或者逼近它。要逼近一个随机分布,其基本思想是:将一个已知的,可控的随机分布 q(z) q ( z ) 映射到目标随机分布 p(x) p ( x ) 上。在深度学习领域中,有两个典型的生成模型:1、VAE,变分自编码器;2、GAN,生成对抗性网络,它们的结构如图1、图2:
VAE原理图
图1 VAE结构图
GAN结构图
图2 GAN结构图
VAE的工作流程是:
1、在训练集(Dataset)中抽样,得到样本 xi x i xi x i 经过神经网络编码器(NN Encoder)得到一个正态分布( N(μi,σ2i) N ( μ i , σ i 2 ) )的充分统计量:均值(以图1为例进行解释, μi=(m1,m2,m3) μ i = ( m 1 , m 2 , m 3 ) )和方差( σi=(σ1,σ2,σ3) σ i = ( σ 1 , σ 2 , σ 3 ) );
2、由 N(μi,σ2i) N ( μ i , σ i 2 ) 抽样得到 zi z i , 已知 zi z i 的分布是标准正态分布 N(0,1) N ( 0 , 1 )
3、 zi z i 经过NN_Decoder得到输出 x̂i x ^ i
4、 Loss=x̂ixi L o s s = ‖ x ^ i − x i ‖ ,训练过程就是让Loss取得最小值。
5、训练好的模型,我们可以利用Decoder生成样本,即将已知分布 q(z) q ( z ) 的样本通过Decoder映射成目标 p(x) p ( x ) 分布的样本。
以上过程可以用图3进行概括。
VAE原理
图3 VAE原理图
为比较VAE和GAN的差异,参考图4,简述GAN的工作原理如下:
1、在一个已知的、可控的随机分布 q(z) q ( z ) (e.g.:多维正态分布 q(z)=N(μ,σ2) q ( z ) = N ( μ , σ 2 ) )采样,得到 zi z i
2、 zi z i 经过生成器映射 G(zi) G ( z i ) 得到在样本空间(高维空间)的一个数据点 xgi x i g ,有 xgi=G(zi) x i g = G ( z i )
3、 xgi x i g 与样本流型(Manifolds)之间的距离在图中表示为 D(xgi,x̂gi)=xgix̂gi D ( ‖ x i g , x ^ i g ) = ‖ x i g − x ^ i g ‖ ,其中 x̂gi x ^ i g 表示 xgi x i g 在流型上的投影,生成器的目标是减少此距离,可以将此距离定义为生成器的损失(Loss)。
4、因为不能直接得到样本的流型,因而需要借助判别器(Discriminator)间接地告诉生成器(Generator)它生成的样本距样本流型是“远了”还是“近了”,即判别真(real)和假(fake)正确的概率,一方面要判别器提高判别准确性,一方面又要提高生成器的以假乱真的能力,由此形成了竞争导致的均衡,使判别器和生成器两者性能同时提高,最后我们可获得最优的生成器。
5、理想的最优生成器,能将生成的 xgi

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值