Pearson correlation coefficient

本文介绍了皮尔森相关系数的概念及其在统计学中的应用。皮尔森相关系数用于衡量两个变量之间的线性相关强度,其值介于-1到+1之间。当系数接近-1或+1时,表示变量间存在较强的线性关系;接近0时,则表明变量间的关系较弱或不存在线性关系。

1简介

皮尔森相关系数

皮尔森相关系数

皮尔森相关系数(Pearson correlation coefficient)也称 皮尔森积矩相关系数(Pearson product-moment correlation coefficient) ,是一种线性相关系数。皮尔森相关系数是用来反映两个变量 线性相关程度的统计量。相关系数用r表示,其中n为 样本量,分别为两个变量的 观测值均值。r描述的是两个变量间 线性相关强弱的程度。r的绝对值越大表明相关性越强。

2详情

两变项间的相关可以用许多统计值来测量,最常用的是皮尔森相关系数。
对样本资料而言,皮尔森积矩相关系数的定义如下:
样本资料的皮尔森积矩相关系数(一般简称为样本相关系数)为样本共 变异数除以的标准差与的标准差之乘积。
样本的 简单相关系数一般用r表示,其中n 为样本量, 分别为两个变量的观测值和均值。r描述的是两个变量间线性相关强弱的程度。r的取值在-1与+1之间,若r>0,表明两个变量是正相关,即一个变量的值越大,另一个变量的值也会越大;若r<0,表明两个变量是负相关,即一个变量的值越大另一个变量的值反而会越小。r 的 绝对值越大表明相关性越强,要注意的是这里并不存在因果关系。若r=0,表明两个变量间不是 线性相关,但有可能是其他方式的相关(比如 曲线方式)
利用样本相关系数推断总体中两个变量是否相关,可以用t 统计量对总体相关系数为0的原假设进行检验。若t 检验显著,则拒绝原假设,即两个变量是 线性相关的;若t 检验不显著,则不能拒绝原假设,即两个变量不是线性相关的
【2025亚太杯B题】辐射制冷技术的建模与优化——亚太地区大学生数学建模竞赛(思路、代码、论文持续更新中.......)内容概要:本文档围绕2025亚太杯B题“辐射制冷技术的建模与优化”展开,提供数学建模竞赛所需的思路、代码和论文写作支持,内容持续更新。文档列举了大量科研仿真资源,涵盖智能优化算法、机器学习、路径规划、电力系统、信号处理等多个技术领域,重点服务于数学建模参赛者和技术研究人员。资源以Matlab和Python为主要实现工具,包含多种算法在实际问题中的应用案例,如粒子群优化、遗传算法、卡尔曼滤波、深度学习等,并提供配套代码和仿真模型。同时附有网盘链接,便于获取完整资料。; 适合人群:参加数学建模竞赛的本科生、研究生,具备一定编程基础(尤其是Matlab/Python)和数学建模能力的科研初学者;从事智能优化、电力系统、信号处理等相关领域的技术人员。; 使用场景及目标:①辅助完成亚太杯等数学建模竞赛题目,特别是B题辐射制冷技术的建模与优化;②为科研项目提供算法实现参考,提升仿真效率与模型精度;③学习多种智能算法在工程问题中的具体应用方式。; 阅读建议:建议按目录顺序系统浏览,结合提供的代码实例进行调试与复现,重点关注与自身研究方向相关的模块;充分利用网盘资源,对照思路与代码深化理解,提升建模与编程实战能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值