rl中,GRPO损失函数详解。


在TRL(Transformer Reinforcement Learning)库中,GRPO(Group Relative Policy Optimization)是一种基于策略优化的强化学习算法,其核心目标是通过组内相对奖励和KL散度约束实现稳定高效的模型训练。以下结合代码实现,详细解析GRPO损失函数的设计逻辑。


一、GRPO损失函数的设计背景

GRPO的提出是为了解决传统PPO(Proximal Policy Optimization)算法中依赖价值模型(Value Model)带来的计算复杂性问题。其核心改进点包括:

  1. 组内相对奖励:通过同一提示(prompt)生成多个响应(completion),利用组内奖励的均值和标准差计算优势(Advantage),无需训练独立的价值模型。
  2. KL散度约束:直接在损失函数中加入策略模型(Policy Model)与参考模型(Reference Model)的KL散度惩罚项,避免策略偏离参考分布。

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

几道之旅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值