金融时间序列预测方法合集:CNN、LSTM、随机森林、ARMA预测股票价格(适用于时序问题)、相似度计算、各类评判指标绘图

金融时间序列预测方法合集:CNN、LSTM、随机森林、ARMA预测股票价格(适用于时序问题)、相似度计算、各类评判指标绘图(数学建模科研适用)

1.使用CNN模型预测未来一天的股价涨跌-CNN(卷积神经网络)

使用CNN模型预测未来一天的股价涨跌

数据介绍

open 开盘价;close 收盘价;high 最高价

low 最低价;volume 交易量;label 涨/跌

训练规模

特征数量×5;天数×5 = 5 × 5

卷积过程

最大池化过程

代码流程

  1. 获取股票数据
  2. 数据归一化
  3. 数据预处理(划分成5×5)
  4. 数据集分割(训练集和测试集)
  5. 定义卷积神经网络
  6. 评估预测模型

模型架构

码源链接见文末跳转

文末链接跳转

2.基于LSTM预测股票价格(长短期记忆神经网络)

基于LSTM预测股票价格(简易版)

数据集:

沪深300数据

数据特征:

只选用原始数据特征(开盘价、收盘价、最高价、最低价、交易量)

时间窗口:

15天

代码流程:

读取数据->生成标签(下一天收盘价)->分割数据集->LSTM模型预测->可视化->预测结果评估

LSTM网络结构:

函数介绍:

1、generate_label 生成标签(下一天收盘价)

2、generate_model_data 分割数据集

3、evaluate 结果评估

4、lstm_model LSTM预测模型

5、main 主函数(含可视化)

可视化输出:

训练集测试集拟合效果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xifenglie123321

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值