金融时间序列预测方法合集:CNN、LSTM、随机森林、ARMA预测股票价格(适用于时序问题)、相似度计算、各类评判指标绘图(数学建模科研适用)
1.使用CNN模型预测未来一天的股价涨跌-CNN(卷积神经网络)
使用CNN模型预测未来一天的股价涨跌
数据介绍
open 开盘价;close 收盘价;high 最高价
low 最低价;volume 交易量;label 涨/跌
训练规模
特征数量×5;天数×5 = 5 × 5
卷积过程
最大池化过程
代码流程
- 获取股票数据
- 数据归一化
- 数据预处理(划分成5×5)
- 数据集分割(训练集和测试集)
- 定义卷积神经网络
- 评估预测模型
模型架构
码源链接见文末跳转
2.基于LSTM预测股票价格(长短期记忆神经网络)
基于LSTM预测股票价格(简易版)
数据集:
沪深300数据
数据特征:
只选用原始数据特征(开盘价、收盘价、最高价、最低价、交易量)
时间窗口:
15天
代码流程:
读取数据->生成标签(下一天收盘价)->分割数据集->LSTM模型预测->可视化->预测结果评估
LSTM网络结构:
函数介绍:
1、generate_label 生成标签(下一天收盘价)
2、generate_model_data 分割数据集
3、evaluate 结果评估
4、lstm_model LSTM预测模型
5、main 主函数(含可视化)
可视化输出:
训练集测试集拟合效果: