Sift关键点匹配与图像校正

  • 使用SIFT进行两张图片的关键点特征提取;
  • 进而进行关键点匹配;
  • 对匹配后的关键点执行RANSAC粗差剔除;
  • 进而利用匹配关键点计算透视变换矩阵得到变换后的图片;
import numpy as np
import cv2
from matplotlib import pyplot as plt

MIN_MATCH_COUNT = 10

img1 = cv2.imread('x1.jpeg', 0)
img2 = cv2.imread('x2.jpeg', 0)

# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()

# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)

FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)

flann = cv2.FlannBasedMatcher(index_params, search_params)

matches = flann.knnMatch(des1, des2, k=2)

# store all the good matches as per Lowe's ratio test.
good = []
for m, n in matches:
    if m.distance < 0.7*n.distance:
        good.append(m)



if len(good)>MIN_MATCH_COUNT:
    src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
    dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)

    M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
    matchesMask = mask.ravel().tolist()

    h,w = img1.shape
    pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
    dst = cv2.perspectiveTransform(pts,M)

    img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)

	# 校正后的图像
    imgOut = cv2.warpPerspective(img2, M, (img1.shape[1], img1.shape[0]), flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP)

else:
    print("Not enough matches are found - %d/%d" % (len(good),MIN_MATCH_COUNT))
    matchesMask = None



draw_params = dict(matchColor = (0,255,0), # draw matches in green color
                   singlePointColor = None,
                   matchesMask = matchesMask, # draw only inliers
                   flags = 2)

# 对应关键点连接图
img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)

plt.subplot(121)
plt.imshow(imgOut)
plt.subplot(122)
plt.imshow(img3, 'gray')
plt.show()

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值