手势识别

[功能]
何为手势识别? 比如:你在屏幕上从左至右划出的一个动作 这就是手势 能够识别这个的就是 手势识别

[思路]
1. android 有一个手势识别的类:OnGestureListener
2. 在 GestureDetector() 中使用上面的class 即可 系统就会把手势交由该类来处理

public class SampleGuest implements OnGestureListener {   
        Activity activity;   
           
        public SampleGuest(Activity a){   
            activity = a;   
        }   
       
        // called automatically, any screen action will Triggered it   
        public boolean onTouchEvent(MotionEvent me){   
            return gesture.onTouchEvent(me);   
        }   
  
        @Override  
        public boolean onDown(MotionEvent e) {   
            // TODO Auto-generated method stub   
            Log.d("TAG","[+++++++++++][onDown]");   
            return true;   
        }   
  
        @Override  
        //e1, the begin of ACTION_DOWN MotionEvent   
        //e2, the end of ACTION_DOWN MotionEvent   
        // velocityX, the motion speed in X   
        // velocityY:the motion speed in y   
        public boolean onFling(MotionEvent e1, MotionEvent e2, float velocityX,   
                float velocityY) {   
            // TODO Auto-generated method stub   
            if ((e1.getX() - e2.getX() > VALUE_DISTANCE)   
                    && Math.abs(velocityX) > VALUE_SPEED) {   
                Log.d("TAG","[+++++++++++][onFling][Fling left]");   
            } else if ((e2.getX() - e1.getX() > VALUE_DISTANCE)   
                    && Math.abs(velocityX) > VALUE_SPEED) {   
                Log.d("TAG","[+++++++++++][onDown][Fling right]");   
  
            }   
            return true;   
        }   
  
        @Override  
        public void onLongPress(MotionEvent e) {   
            // TODO Auto-generated method stub   
            Log.d("TAG","[+++++++++++][onLongPress]");   
        }   
  
        @Override  
        public boolean onScroll(MotionEvent e1, MotionEvent e2, float distanceX,   
                float distanceY) {   
            // TODO Auto-generated method stub   
            Log.d("TAG","[+++++++++++][onScroll]");   
            return true;   
        }   
  
        @Override  
        public void onShowPress(MotionEvent e) {   
            // TODO Auto-generated method stub   
            Log.d("TAG","[+++++++++++][onShowPress]");   
        }   
  
        @Override  
        public boolean onSingleTapUp(MotionEvent e) {   
            // TODO Auto-generated method stub   
            Log.d("TAG","[+++++++++++][onSingleTapUp]");   
            return true;   
        }   
           
    }  

 

2. 如何使用

SampleGuest sg = new SampleGuest(this);   
GestureDetector gesture = new GestureDetector(sg);  

 

在日常的生活中我们最经常使用的距离毫无疑问应该是欧式距离,但是对于一些特殊情况,欧氏距离存在着其很明显的缺陷,比如说时间序列,举个比较简单的例子,序列A:1,1,1,10,2,3,序列B:1,1,1,2,10,3,如果用欧氏距离,也就是distance[i][j]=(b[j]-a[i])*(b[j]-a[i])来计算的话,总的距离和应该是128,应该说这个距离是非常大的,而实际上这个序列的图像是十分相似的,这种情况下就有人开始考虑寻找新的时间序列距离的计算方法,然后提出了DTW算法,这种方法在语音识别,机器学习方便有着很重要的作用。 这个算法是基于动态规划(DP)的思想,解决了发音长短不一的模板匹配问题,简单来说,就是通过构建一个邻接矩阵,寻找最短路径和。 还以上面的2个序列作为例子,A中的10和B中的2对应以及A中的2和B中的10对应的时候,distance[3]以及distance[4]肯定是非常大的,这就直接导致了最后距离和的膨胀,这种时候,我们需要来调整下时间序列,如果我们让A中的10和B中的10 对应 ,A中的1和B中的2对应,那么最后的距离和就将大大缩短,这种方式可以看做是一种时间扭曲,看到这里的时候,我相信应该会有人提出来,为什么不能使用A中的2与B中的2对应的问题,那样的话距离和肯定是0了啊,距离应该是最小的吧,但这种情况是不允许的,因为A中的10是发生在2的前面,而B中的2则发生在10的前面,如果对应方式交叉的话会导致时间上的混乱,不符合因果关系。 接下来,以output[6][6](所有的记录下标从1开始,开始的时候全部置0)记录A,B之间的DTW距离,简单的介绍一下具体的算法,这个算法其实就是一个简单的DP,状态转移公式是output[i] [j]=Min(Min(output[i-1][j],output[i][j-1]),output[i-1][j-1])+distance[i] [j];最后得到的output[5][5]就是我们所需要的DTW距离.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值