一、 Sara算法中用到的其他方法
(一)蒙特卡洛方法
蒙特卡洛方法也被称为统计模拟方法,是一种基于概率统计的数值计算方法。其使用重复随机抽样,然后对数据求期望来估算目标值。
举例:
我们要求一个策略下的状态价值函数,那么我们通过该策略采样若干条序列,对这些序列上的状态价值函数求期望来估算真实的状态价值函数。一条序列是指从初始状态,按照指定策略下执行动作进行状态转换,直到到达结束状态。
(二)时序差分法
蒙特卡洛法的优劣势:
优势:直接凭借采样到的数据进行推算,不需要直到环境(状态转移函数、奖励函数)
劣势:蒙特卡洛的数据估算是无偏的,他对任何一个序列一视同仁,这也会导致各个序列的数据值方差过大,不利于最终结果的估算。
时序差分法
利用后续一步的状态来更新当前状态的值,这是有偏的,方差较小。时序差分方法,每在当前状态下执行一个动作就会得到一个新的状态,利用新状态的价值函数来估计前面状态的价值函数。