这一节是文章中第二部分基础知识。这一节公式较多,会影响阅读时效。
2.3假设
为了估计治疗效果,在因果推断文献中通常使用以下假设。
假设2.1 稳定的unit治疗价值假设(SUTVA)
任何unit的潜在结果都不会随分配给其他unit的治疗方法而变化,并且对于每个unit,每种治疗水平都没有不同的形式或版本,从而导致不同的潜在结果。
该假设强调两点:
-
第一点是每个unit的独立性,即unit之间没有交互作用。在上面的示例中,一个患者的结果不会影响其他患者的结果。
-
第二点是每种处理的单一版本。在上面的示例中,在SUTVA假设下,具有不同剂量的药物A是不同的治疗方法。
假设2.2 忽略性
给定背景变量X,治疗分配W与潜在结果无关,即在说明性示例的背景下,这种可忽略性假设有两个方面:
首先,如果两个患者的背景变量X相同,则无论治疗分配如何,其潜在结局均应相同,即p(Yi(0),Yi (1)| X= x,W = Wi)= p(Yj(0),Yj(1)| X = x,W = Wj)。
类似地,如果两个患者具有相同的背景变量值,则无论他们具有潜在结果的值如何,其治疗分配机制都应相同,即p(W | X = x,Yi(0),Yi(1))= p (W | X = x,Yj(0),Yj(1))。
可忽略性假设也称为无混杂假设。有了这个毫无疑问的假设,对于具有相同背景变量X的unit,可以将它们的处理分配视为随机的。
假设2.3 积极性
对于任何X值,处理分配都不是确定的:
如果对于某些X值,则处理分配是确定性的;否则, 对于这些值,就永远不会观察到至少一种治疗的结果。在