因果推理(九):双重差分(Difference-in-Differences)

本文介绍了因果推理中的双重差分方法,重点讨论了ATT(平均治疗效应在处理组)的识别和计算。文章阐述了无混杂假设、时间维度的影响、平行趋势假设及其重要性,以及在实际应用中平行趋势假设可能遇到的问题和解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 预备知识

回顾一下第二章的 unconfoundedness 假设:
在这里插入图片描述
无混杂假设等价于 T T T Y Y Y之间没有畅通无阻的后门路径。在这种情况下,关联就是因果,那么可以用下面的式子计算ATE:

E [ Y ( 1 ) − Y ( 0 ) ] = E [ Y ( 1 ) ] − E [ Y ( 0 ) ] = E [ Y ( 1 ) ∣ T = 1 ] − E [ Y ( 0 ) ∣ T = 0 ] = E [ Y ∣ T = 1 ] − E [ Y ∣ T = 0 ] \begin{aligned} \mathbb{E}[Y(1)-Y(0)] &=\mathbb{E}[Y(1)]-\mathbb{E}[Y(0)] \\ &=\mathbb{E}[Y(1) \mid T=1]-\mathbb{E}[Y(0) \mid T=0] \\ &=\mathbb{E}[Y \mid T=1]-\mathbb{E}[Y \mid T=0] \end{aligned} E[Y(1)Y(0)]=E[Y(1)]E[Y(0)]=E[Y(1)

Difference-in-Differences (DiD) 方法是一种统计技术和准实验设计,用于评估事件或干预措施的效果。这种方法通过比较受处理组与对照组在某个特定事件发生前后的变化差异来估计因果效应。 概念上,DiD依赖于平行趋势假设(parallel trends assumption),即如果没有实施政策或者没有受到外部冲击的影响,那么控制组和处理组的结果变量应该随时间以相同的方式变动。 ### 应用场景 1. 政策评价 DiD广泛应用于公共经济学和社会科学中,用来衡量新法律、法规或其他政府行动的实际影响。例如,在一个州引入新的最低工资法之后,可以通过对比该州和其他未改变最低工资水平的类似州之间的就业率变化来进行效果评估。 2. 市场研究 商业环境中也常使用此方法来测试营销活动的有效性或是新产品推出对销售业绩带来的影响。比如一家公司可以在部分地区试行促销策略,并与其他不参与试验区域的数据相比较。 3. 医疗健康领域 当无法随机分配患者接受治疗时,研究人员可能会采用DiD来估算某种疗法对于疾病结果的作用。这包括观察不同时间段内两个相似但其中一个接受了特殊护理方案的人群间的恢复情况差别。 4. 教育改革成效分析 对比实行教育新政前后学生表现的变化以及那些没有经历这些变革地区的学生成绩走势,以此判断教改是否成功提高了教学质量。 为了正确运用DiD模型,需要确保数据满足一定的前提条件并且选择合适的回归设定。此外,还应考虑其他可能混淆因素的存在并对它们加以调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值