雷达作用距离推导

参考链接:【雷达原理】基本雷达方程的推导

雷达信噪比公式:
S N R = P t G 2 λ 2 σ ( 4 π ) 3 R 4 k T B L \mathrm{SNR}=\frac{P_t G^2 \lambda^2 \sigma}{(4 \pi)^3 R^4 k T B L} SNR=(4π)3R4kTBLPtG2λ2σ

  • P t P_t Pt : 发射功率
  • G G G : 天线增益
  • λ \lambda λ : 信号波长
  • σ \sigma σ : 目标雷达散射截面积 (RCS)
  • R R R : 目标距离
  • k k k : 玻尔兹曼常数
  • T T T : 系统噪声温度
  • B: 系统带宽
  • L L L : 系统总损耗

信噪比SNR是接收功率和噪声功率的比值,在实际使用中,噪声功率我们认为是正态分布的热噪声,则SNR和目标探测距离之间有如下关系:
S N R ∝ P r ∝ 1 R 4 S N R \propto P_r \propto \frac{1}{R^4} SNRPrR41
假设目标的 σ \sigma σ 不随着 R R R变化而变化,那么,当目标检测距离增加一倍的时候, S N R \mathrm{SNR} SNR变为原来的 ( 1 2 ) 4 = 1 16 \left(\frac{1}{2}\right)^4=\frac{1}{16} (21)4=161

S N R \mathrm{SNR} SNR一般采用分贝表示,当真数为 1 2 \frac{1}{2} 21的时候,其分贝值表示有如下关系:
d B = 10 log ⁡ 10 ( 1 2 ) = − 3 d B d B=10 \log _{10}\left(\frac{1}{2}\right)=-3 d B dB=10log10(21)=3dB

所以,此时 S N R \mathrm{SNR} SNR减小: Δ d B = log ⁡ 10 ( 1 2 ) 4 = − 3 d B ∗ 4 = − 12 d B \Delta d B= \log _{10}\left(\frac{1}{2}\right)^4=-3 d B*4=-12d B ΔdB=log10(21)4=3dB4=12dB

假设,此时距离 R 1 = 39 m R_1=39m R1=39m S N R 1 = 24 d B \mathrm{SNR_1}=24 dB SNR1=24dB,当 S N R 2 = 18 d B \mathrm{SNR_2}=18 dB SNR2=18dB时, Δ S N R = − 6 d B \Delta\mathrm{SNR}=-6dB ΔSNR=6dB,距离变为原来的 2 \sqrt{2} 2 倍,此时的额距离为: R 2 = R 1 ∗ 2 ≈ 55 m R_2=R_1*\sqrt{2}\approx{55m} R2=R12 55m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值