参考链接:【雷达原理】基本雷达方程的推导
雷达信噪比公式:
S
N
R
=
P
t
G
2
λ
2
σ
(
4
π
)
3
R
4
k
T
B
L
\mathrm{SNR}=\frac{P_t G^2 \lambda^2 \sigma}{(4 \pi)^3 R^4 k T B L}
SNR=(4π)3R4kTBLPtG2λ2σ
- P t P_t Pt : 发射功率
- G G G : 天线增益
- λ \lambda λ : 信号波长
- σ \sigma σ : 目标雷达散射截面积 (RCS)
- R R R : 目标距离
- k k k : 玻尔兹曼常数
- T T T : 系统噪声温度
- B: 系统带宽
- L L L : 系统总损耗
信噪比SNR是接收功率和噪声功率的比值,在实际使用中,噪声功率我们认为是正态分布的热噪声,则SNR和目标探测距离之间有如下关系:
S
N
R
∝
P
r
∝
1
R
4
S N R \propto P_r \propto \frac{1}{R^4}
SNR∝Pr∝R41
假设目标的
σ
\sigma
σ 不随着
R
R
R变化而变化,那么,当目标检测距离增加一倍的时候,
S
N
R
\mathrm{SNR}
SNR变为原来的
(
1
2
)
4
=
1
16
\left(\frac{1}{2}\right)^4=\frac{1}{16}
(21)4=161
S N R \mathrm{SNR} SNR一般采用分贝表示,当真数为 1 2 \frac{1}{2} 21的时候,其分贝值表示有如下关系:
d B = 10 log 10 ( 1 2 ) = − 3 d B d B=10 \log _{10}\left(\frac{1}{2}\right)=-3 d B dB=10log10(21)=−3dB
所以,此时 S N R \mathrm{SNR} SNR减小: Δ d B = log 10 ( 1 2 ) 4 = − 3 d B ∗ 4 = − 12 d B \Delta d B= \log _{10}\left(\frac{1}{2}\right)^4=-3 d B*4=-12d B ΔdB=log10(21)4=−3dB∗4=−12dB。
假设,此时距离 R 1 = 39 m R_1=39m R1=39m, S N R 1 = 24 d B \mathrm{SNR_1}=24 dB SNR1=24dB,当 S N R 2 = 18 d B \mathrm{SNR_2}=18 dB SNR2=18dB时, Δ S N R = − 6 d B \Delta\mathrm{SNR}=-6dB ΔSNR=−6dB,距离变为原来的 2 \sqrt{2} 2倍,此时的额距离为: R 2 = R 1 ∗ 2 ≈ 55 m R_2=R_1*\sqrt{2}\approx{55m} R2=R1∗2≈55m