The parameters , , , and which, like the three Euler angles, provide a way to uniquely characterize the orientation of a solid body. These parameters satisfy the identities
(1) | |||
(2) | |||
(3) | |||
(4) | |||
(5) |
and
(6) | |||
(7) |
where denotes the complex conjugate. In terms of the Euler angles , , and , the Cayley-Klein parameters are given by
(8) | |||
(9) | |||
(10) | |||
(11) |
(Goldstein 1960, p. 155).
The transformation matrix is given in terms of the Cayley-Klein parameters by
(12) |
(Goldstein 1960, p. 153).
The Cayley-Klein parameters may be viewed as parameters of a matrix (denoted for its close relationship with quaternions)
(13) |
which characterizes the transformations
(14) | |||
(15) |
of a linear space having complex axes. This matrix satisfies
(16) |
where is the identity matrix and the conjugate transpose, as well as
(17) |
In terms of the Euler parameters and the Pauli matrices , the -matrix can be written as
(18) |
(Goldstein 1980, p. 156).
REFERENCES:
Goldstein, H. "The Cayley-Klein Parameters and Related Quantities." §4-5 in Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, pp. 148-158, 1980.
Varshalovich, D. A.; Moskalev, A. N.; and Khersonskii, V. K. "Description of Rotations in Terms of Unitary Matrices. Cayley-Klein Parameters." §1.4.3 in Quantum Theory of Angular Momentum. Singapore: World Scientific, pp. 24-27, 1988.
CITE THIS AS:
Eric W. Weisstein. "Cayley-Klein Parameters." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Cayley-KleinParameters.html