Cayley-Klein Parameters

The parameters alpha, beta, gamma, and delta which, like the three Euler angles, provide a way to uniquely characterize the orientation of a solid body. These parameters satisfy the identities

alphaalpha^_+gammagamma^_=1(1)
alphaalpha^_+betabeta^_=1(2)
betabeta^_+deltadelta^_=1(3)
alpha^_beta+gamma^_delta=0(4)
alphadelta-betagamma=1(5)

and

beta=-gamma^_(6)
delta=alpha^_,(7)

where z^_ denotes the complex conjugate. In terms of the Euler angles theta, phi, and psi, the Cayley-Klein parameters are given by

alpha=e^(i(psi+phi)/2)cos(1/2theta)(8)
beta=ie^(i(psi-phi)/2)sin(1/2theta)(9)
gamma=ie^(-i(psi-phi)/2)sin(1/2theta)(10)
delta=e^(-(psi+phi)/2)cos(1/2theta)(11)

(Goldstein 1960, p. 155).

The transformation matrix is given in terms of the Cayley-Klein parameters by

A==[1/2(alpha^2-gamma^2+delta^2-beta^2) 1/2i(gamma^2-alpha^2+delta^2-beta^2) gammadelta-alphabeta; 1/2i(alpha^2+gamma^2-beta^2-delta^2) 1/2(alpha^2+gamma^2+beta^2+delta^2) -i(alphabeta+gammadelta); betadelta-alphagamma i(alphagamma+betadelta) alphadelta+betagamma](12)

(Goldstein 1960, p. 153).

The Cayley-Klein parameters may be viewed as parameters of a matrix (denoted Q for its close relationship with quaternions)

Q==[alpha beta; gamma delta](13)

which characterizes the transformations

u^'=alphau+betav(14)
v^'=gammau+deltav.(15)

of a linear space having complex axes. This matrix satisfies

Q^(H)Q==QQ^(H)==I,(16)

where I is the identity matrix and A^(H) the conjugate transpose, as well as

|Q|^(H)|Q|==1.(17)

In terms of the Euler parameters e_i and the Pauli matrices sigma_i, the Q-matrix can be written as

Q==e_0I+i(e_1sigma_1+e_2sigma_2+e_3sigma_3)(18)

(Goldstein 1980, p. 156).

SEE ALSO: Euler Angles, Euler Parameters, Pauli Matrices, Quaternion, Rotation. [Pages Linking Here]

REFERENCES:

Goldstein, H. "The Cayley-Klein Parameters and Related Quantities." §4-5 in Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, pp. 148-158, 1980.

Varshalovich, D. A.; Moskalev, A. N.; and Khersonskii, V. K. "Description of Rotations in Terms of Unitary 2x2 Matrices. Cayley-Klein Parameters." §1.4.3 in Quantum Theory of Angular Momentum. Singapore: World Scientific, pp. 24-27, 1988.



CITE THIS AS:

Eric W. Weisstein. "Cayley-Klein Parameters." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Cayley-KleinParameters.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值