图像处理中的中心化、归一化与白化

图像分类任务中,深度学习模型通常需要对输入图像进行预处理,如中心化、归一化和白化。中心化使图像像素均值为0,加速模型收敛;归一化确保0均值和单位方差,降低光照和反射率影响;白化则进一步消除维度间相关性,增强模型的特征提取能力。本文通过实例代码详细解释了这三个概念。
摘要由CSDN通过智能技术生成

一、背景

    图像分类是深度学习中常见的任务,在进行模型的训练时,经常需要对图片进行一些预处理后才能很好的训练模型。这些预处理的作用是什么,有什么区别,本文结合实例和代码,对此做一个综合性的讲解。为了代码实现方便,本文使用的图像是灰度图,至于RGB图像,其实现原理类似,区别仅在于通道数不一致而已。本文采用Lena图像进行说明。

二、中心化

    中心化是将每个像素减去图像中所有像素的均值,使得变换后的图像的所有像素的均值变为0,因此有时候也称作0均值中心化,Hindon在ImageNet中获胜的论文中对图像的预处理就使用了中心化中心化本质上是将所有的像素值在坐标轴上进行了一次平移。下面看一段代码来演示中心化。代码先加载图片,并将图片转为ndarray,打印了中心化之前的部分像素值,中心化后,再次打印了相同位置的部分像素值。

import numpy as np
from numpy import linalg
from PIL import Image

img = Image.open("./lena.jpg")
x = np.array(img, dtype='float32')
print(x[:5,:5])
'''
output:
[[162.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值