日常学习 mmsegmentation处理数据集和图片格式

本文详细介绍了如何在mmsegmentation中处理自定义数据集,包括创建数据集文件、配置数据处理参数,并强调了像素值与类别数的关系。此外,还讲解了调色板的定义和使用,用于将分割结果以彩色图展示。正确设置像素值和调色板对于模型训练和结果可视化至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. mmsegmentation 对数据集的读取与处理

对于自定义数据集需要在mmseg/datasets下建立自己的数据集文件,如

import os.path as osp
from .builder import DATASETS
from .custom import CustomDataset

@DATASETS.register_module()  # 注册   不要忘记在__init__.py作显示导入
class RoadDataset(CustomDataset):
    CLASSES = ('background', 'foreground')   # 类别名称设置
    PALETTE = [[120, 120, 120], [6, 230, 230]]  # 调色板设置

    def __init__(self,**kwargs):
        super(RoadDataset, self).__init__(
            img_suffix='_sat.jpg',  # img文件‘后缀’
            seg_map_suffix='_mask.png',  # gt文件‘后缀’

            """
               对于二分类设成False,对于多分类,视数据集而定,对于ade20k为True
               因为0代表背景,但是不包含在150个类别中
            """

            reduce_zero_label=False,   

            **kwargs)
        assert osp.exists(self.img_dir)
        

同时需要在configs/dataset下建立自己的数据处理配置文件,如

# dataset settings
dataset_type = 'RoadDataset'
data_root = 'data/DeepGlobe'
img_norm_cfg = dict(
    mean=[90.473, 91.277, 83.520], std=[50.5127, 48.89, 48.681], to_rgb=True)
img_scale = (1024, 1024)  # 图像的原始尺寸
crop_size = (256, 256)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations'),
    dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
    dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=img_scale,
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
data = dict(
    samples_per_gpu=8,
    workers_per_gpu=4,
    train=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='train/img',
        ann_dir='train/label',
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='val/img',
        ann_dir='val/label',
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='val/img',
        ann_dir='val/label',
        pipeline=test_pipeline))

mmsegmentation中要求,gt的像素值应该在[0,N-1],其中N为类别数
这个很重要,像素的值得从0开始逐渐递增。

我之前就在处理potsdam数据集的时候,重新二值化把像素的值设置成了1,2,3,4,5,6、结果就有一类的精度异常,怎么都是0。
比如在2分类的时候,像素的值就得是0,1. (0,255)的设置用于训练跑的起来,但是结果不对。
在这里插入图片描述

参考链接:
https://zhuanlan.zhihu.com/p/380189172

2. mmsegmentation调色板palette的使用

对分割结果进行可视化时,往往可以通过调色板技术将灰度图显示为彩色图

在mmsegmentation中的核心代码如下(以ade20K为例):

调色板的定义:

PALETTE = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
               [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
               [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
               [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
               [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
               [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
               [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
               [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
               [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
               [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
               [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
               [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
               [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
               [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
               [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
               [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
               [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
               [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
               [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
               [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
               [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
               [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
               [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
               [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
               [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
               [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
               [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
               [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
               [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
               [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
               [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
               [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
               [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
               [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
               [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
               [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
               [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
               [102, 255, 0], [92, 0, 255]]

调色板的使用:

seg = np.array(seg_map)
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)   
for label, color in enumerate(PALETTE):
    color_seg[seg == label, :] = color  # numpy 数组的“新奇”使用,就是把预测结果的灰度像素值改成RGB
    color_seg = color_seg[..., ::-1] # convert to BGR (cv2的存储顺序是GBR,所以逆序读取RGB就行了)
    cv2.imwrite(out_file,color_seg)

ps:PIL中的调色板模式为P,每个像素值对应一个RGB值

### mmsegmentation 中 RLE 数据集的下载与使用 对于 `mmsegmentation` 库中的运行长度编码 (RLE) 数据集,通常用于图像分割任务中表示掩码。为了加载处理这些数据集,在配置文件中指定相应的参数即可[^1]。 #### 配置文件设置 在配置文件里定义数据源时,可以通过设定特定字段来支持 RLE 编码格式的数据集。下面是一个简单的例子展示如何配置 COCO 格式的语义分割数据集,该格式可以包含 RLE 掩码: ```yaml data_root = 'path/to/coco' train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='LoadAnnotations', reduce_zero_label=True, with_seg=True), # 加载带有 RLE 的标注信息 ... ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type='COCODataset', # 或其他兼容 RLE 的数据集类 data_root=data_root, ann_file=f'{data_root}/annotations/stuff_train.json', img_prefix=f'{data_root}/images/train/', pipeline=train_pipeline)) ``` 上述代码片段展示了如何通过修改配置文件来适应具有 RLE 编码标签的数据集。需要注意的是,实际路径应替换为本地存储位置,并且确保 JSON 文件内含有以 RLE 形式保存的对象实例或像素级类别信息。 #### 下载官方预训练模型及其对应数据集 如果希望获取已经准备好的、适用于 `mmsegmentation` 并采用 RLE 方式的公开数据集,则可以直接利用项目仓库提供的资源链接进行下载。例如,访问 GitHub 上 OpenMMLab 组织下的 [mmsegmentation](https://github.com/open-mmlab/mmsegmentation/tree/v0.24.1) 页面查看是否有提供相关数据集的说明文档或者直接下载链接;另外也可以探索 Model Zoo 来寻找可能附带测试用例的数据集合。 #### Python API 示例 除了基于配置的方式外,还可以借助 Python 脚本动态创建数据加载器并读取含 RLE 标签的信息: ```python from mmseg.datasets.builder import DATASETS from mmseg.datasets.custom import CustomDataset import os.path as osp @DATASETS.register_module() class MyCustomDataset(CustomDataset): CLASSES = ('background', 'object') PALETTE = [[0, 0, 0], [255, 255, 255]] def __init__(self, **kwargs): super().__init__( img_suffix='.jpg', seg_map_suffix='.png', split=None, **kwargs) dataset = MyCustomDataset( pipeline=[], data_root='./my_dataset', ann_file='annotation_with_rle.json') for i in range(len(dataset)): sample = dataset[i] print(f'Sample {i}: Image shape={sample["img"].shape}, Segmentation map shape={sample["gt_semantic_seg"].shape}') ``` 此脚本定义了一个自定义数据集类继承自 `CustomDataset`,并通过重写构造函数指定了图片扩展名以及分隔符等细节。之后初始化对象时传入必要的参数如根目录路径注解文件名称(这里假设是以 JSON 格式记录了 RLE 编码)。最后遍历整个数据集打印每张样本的基本属性作为演示。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值