日常学习 mmsegmentation处理数据集和图片格式

  1. mmsegmentation 对数据集的读取与处理

对于自定义数据集需要在mmseg/datasets下建立自己的数据集文件,如

import os.path as osp
from .builder import DATASETS
from .custom import CustomDataset

@DATASETS.register_module()  # 注册   不要忘记在__init__.py作显示导入
class RoadDataset(CustomDataset):
    CLASSES = ('background', 'foreground')   # 类别名称设置
    PALETTE = [[120, 120, 120], [6, 230, 230]]  # 调色板设置

    def __init__(self,**kwargs):
        super(RoadDataset, self).__init__(
            img_suffix='_sat.jpg',  # img文件‘后缀’
            seg_map_suffix='_mask.png',  # gt文件‘后缀’

            """
               对于二分类设成False,对于多分类,视数据集而定,对于ade20k为True
               因为0代表背景,但是不包含在150个类别中
            """

            reduce_zero_label=False,   

            **kwargs)
        assert osp.exists(self.img_dir)
        

同时需要在configs/dataset下建立自己的数据处理配置文件,如

# dataset settings
dataset_type = 'RoadDataset'
data_root = 'data/DeepGlobe'
img_norm_cfg = dict(
    mean=[90.473, 91.277, 83.520], std=[50.5127, 48.89, 48.681], to_rgb=True)
img_scale = (1024, 1024)  # 图像的原始尺寸
crop_size = (256, 256)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations'),
    dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
    dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=img_scale,
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
data = dict(
    samples_per_gpu=8,
    workers_per_gpu=4,
    train=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='train/img',
        ann_dir='train/label',
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='val/img',
        ann_dir='val/label',
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        data_root=data_root,
        img_dir='val/img',
        ann_dir='val/label',
        pipeline=test_pipeline))

mmsegmentation中要求,gt的像素值应该在[0,N-1],其中N为类别数
这个很重要,像素的值得从0开始逐渐递增。

我之前就在处理potsdam数据集的时候,重新二值化把像素的值设置成了1,2,3,4,5,6、结果就有一类的精度异常,怎么都是0。
比如在2分类的时候,像素的值就得是0,1. (0,255)的设置用于训练跑的起来,但是结果不对。
在这里插入图片描述

参考链接:
https://zhuanlan.zhihu.com/p/380189172

2. mmsegmentation调色板palette的使用

对分割结果进行可视化时,往往可以通过调色板技术将灰度图显示为彩色图

在mmsegmentation中的核心代码如下(以ade20K为例):

调色板的定义:

PALETTE = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
               [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
               [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
               [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
               [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
               [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
               [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
               [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
               [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
               [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
               [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
               [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
               [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
               [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
               [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
               [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
               [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
               [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
               [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
               [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
               [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
               [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
               [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
               [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
               [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
               [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
               [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
               [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
               [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
               [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
               [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
               [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
               [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
               [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
               [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
               [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
               [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
               [102, 255, 0], [92, 0, 255]]

调色板的使用:

seg = np.array(seg_map)
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)   
for label, color in enumerate(PALETTE):
    color_seg[seg == label, :] = color  # numpy 数组的“新奇”使用,就是把预测结果的灰度像素值改成RGB
    color_seg = color_seg[..., ::-1] # convert to BGR (cv2的存储顺序是GBR,所以逆序读取RGB就行了)
    cv2.imwrite(out_file,color_seg)

ps:PIL中的调色板模式为P,每个像素值对应一个RGB值

  • 4
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 15
    评论
### 回答1: mmsegmentation是一个基于PyTorch的开源图像分割工具箱,可以用于训练自己的数据集。以下是训练自己数据集的步骤: 1. 准备数据集:将数据集按照训练集、验证集和测试集划分,并将其转换为mmsegmentation所需的格式。 2. 配置训练参数:在mmsegmentation中,训练参数可以通过配置文件进行设置,包括模型、优化器、学习率、损失函数等。 3. 开始训练:使用mmseg的命令行工具开始训练模型,可以通过设置参数来控制训练过程。 4. 评估模型:训练完成后,可以使用mmseg的命令行工具对模型进行评估,包括计算IoU、mIoU等指标。 5. 模型预测:使用训练好的模型对新的图像进行分割预测。 需要注意的是,训练自己的数据集需要一定的计算资源和时间,同时需要对数据集进行充分的预处理和清洗,以提高模型的训练效果。 ### 回答2: mmsegmentation 是一个用于图像分割的深度学习框架,它基于 PyTorch 框架,已经被广泛应用于图像语义分割、实例分割、阴影检测等任务。其所支持的数据类型包括常用的数据集,如 PASCAL VOC、ADE20K、COCO 等。而对于我们自己的数据集,也可以通过一系列步骤来应用于 mmsegmentation 中。 首先,在准备数据时,需要将自己的数据集转化为 mmsegmentation 所支持的数据格式。具体来说,需要将数据集的图片分成训练集、验证集和测试集,同时生成一个 JSON 格式的标注文件,以供训练和测试时使用。同时,还需要对数据进行增强处理,包括大小缩放、翻转、剪裁等等。 其次,在定义模型时,需要根据自己的数据类型选择适合的模型和损失函数。这些模型和损失函数已经在 mmsegmentation 中预定义好了,同时也可以自行定义自己的模型和损失函数。例如,对于常用的图像分割任务,可以使用常见的网络模型,如 UNet、PSPNet 等。 最后,使用 mmsegmentation 进行训练和测试时,需要进行一些参数的配置。主要包括训练参数和测试参数两部分。训练参数包括训练数据集、验证数据集、批量大小、学习率、学习率策略、优化算法等等。测试参数包括测试数据集、模型路径等等。 总体而言,mmsegmentation 是一个非常灵活和易于使用的工具,我们可以使用它来训练和测试自己的数据集。同时,通过不断地调整和优化参数,我们可以得到更加准确的分割结果。 ### 回答3: mmsegmentation是一个基于PyTorch框架的图像分割工具包,可以用来实现各种图像分割算法,如FCN、U-Net、DeepLab、Mask R-CNN等。mmsegmentation提供了训练和测试的代码和模型,也支持自定义数据集的训练。 下面我们将重点介绍mmsegmentation训练自己的数据集: 1. 数据集准备 在训练之前,需要准备好一个包含训练、验证和测试图像以及它们的标注的数据集数据集应该按照一定的文件结构进行组织,比如: ``` + dataset + train - image_1.jpg - image_1.png - ... + val - image_1.jpg - image_1.png - ... + test - image_1.jpg - ... ``` 其中,“train”目录包含训练图像和它们的标注,“val”目录包含验证图像和它们的标注,“test”目录包含测试图像。图像文件可以是jpg、png等格式,标注文件可以是png、mat等格式。注意,标注文件应该和图像文件保持对应,且标注像素的取值通常为0、1、2、...、n-1,表示不同的目标类别。 2. 数据集注册 注册自己的数据集需要通过继承mmcv的Dataset类来实现。自定义数据集需要实现少量方法,包括: * \_\_init\_\_:初始化方法,包括定义类别列表、文件列表等。 * \_\_len\_\_:返回数据集中样本数量。 * \_\_getitem\_\_:返回数据集中指定下标的一条数据和标注。 需要注意的是,返回的数据应该按照mmcv的格式进行处理,比如将图像和标注分别转成ndarray格式并归一化后返回。 3. 配置模型 mmsegmentation支持的模型我们可以通过它的配置文件来配置。通过制定不同的配置文件,我们可以配置不同的网络模型、优化器、学习率策略、训练参数等。对于自己的数据集,我们需要在配置文件中指定类别数、输入图像大小等相关参数。 选择具体的网络模型需要根据自己的数据集大小选择。如果数据集较小,我们可以选择较小的模型,否则可以考虑选择较大的模型,如DeepLabV3+、FCN等。 4. 开始训练 当数据集注册和模型配置完成后,我们可以开始训练自己的数据集。可以通过mmseg中提供的工具进行训练,比如: ``` python tools/train.py ${CONFIG_FILE} ``` 其中,${CONFIG_FILE}是指定的配置文件路径。训练过程中可以通过设置检查点、学习率、优化器等参数来调整模型的训练效果。 5. 验证和测试 训练完成后,我们可以通过mmseg提供的工具进行模型验证和测试,比如: ``` # 验证 python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --eval mIoU # 测试 python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --out result.pkl ``` 其中,${CHECKPOINT_FILE}是训练过程中保存的模型检查点文件路径,验证和测试的输出结果也会保存在指定路径中。在测试阶段,我们可以查看模型的输出结果,检查预测效果是否符合预期。 以上就是使用mmsegmentation训练自己的数据集的主要步骤,需要注意的是,这只是一个大致的过程,具体操作会根据自己的数据集和需求有所不同。同时也需要在训练过程中多多尝试和调整,来达到更好的训练效果。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值