python数据分析——认识GBR梯度提升回归模型

GBR——Gradient boosting regression——梯度提升回归模型

目 录

1 Boosting

   集成学习,Boosting与Bagging的区别

2 Gradient Boosting算法

   算法思想,算法实现,残差与负梯度

 3 终极组合GBR


Boosting

Boosting是一种机器学习算法,常见的机器学习算法有:

决策树算法、朴素贝叶斯算法、支持向量机算法、随机森林算法、人工神经网络算法

Boosting与Bagging算法(回归算法)、关联规则算法、EM(期望最大化)算法、深度学习

1.1 集成学习

背景

我们希望训练得到的模型是一个各方面都稳定表现良好的模型,但是实际情况中得到的在某方面偏好的模型。集成学习则可以通过多个学习器相结合,来获得比单一学习器更优越的泛化性能。

原理

一般集成学习会通过重采样获得一定数量的样本,然后训练多个弱学习器,采用投票法,即少数服从多数原则来选择分类结果,当少数学习器出现错误时,也可以通过多数学习器来纠正结果。

分类

1)个体学习器之间存在较强的依赖性,必须串行生成学习器:boosting类算法;

2) 个体学习器之间不存在强依赖关系,可以并行生成学习器:Bagging类算法

1.2 Boosting与Bagging区别

Boosting

种通用的增强基础算法性能的回归分析算法。它可以将弱学习算法提高为强学习算法,可以应用到其它基础回归算法,如线性回归、神经网络等,来提高精度。

Boosting由于各基学习器之间存在强依赖关系,因此只能串行处理,也就是说Boosting实际上是个迭代学习的过程。

Boosting的工作机制为:

1) 先从初始训练集中训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器处理不当的样本在后续的训练过程中受到更多关注;
2) 然后基于调整后的样本分布来训练下一个基学习器;  
3) 如此重复,直到基学习器数目达到事先自定的值 T ,然后将这 T 个基学习器进行加权结合。

 Bagging

首先从数据集中采样出T个数据集,然后基于这T个数据集,每个训练出一个基分类器,再将这些基分类器进行组合做出预测。Bagging在做预测时,对于分类任务,使用简单的投票法。对于回归任务使用简单平均法。若分类预测时出现两个类票数一样时,则随机选择一个。Bagging非常适合并行处理。

2 Gradient Boosting算法

任何监督学习算法的目标是定义一个损失函数并将其最小化。

Gradient Boosting 的基本思想是:串行地生成多个弱学习器,每个弱学习器的目标是拟合先前累加模型的损失函数的负梯度,使加上该弱学习器后的累积模型损失往负梯度的方向减少。

举个简单的例子

假设有个样本真实值为 10,第一个弱学习器拟合结果为7,则残差为10-7=3

使残差 3 作为下一个学习器的拟合目标,第二个弱学习其拟合结果为2

则这两个弱学习器组合而成的 Boosting 模型对于样本的预测为7+2=9

以此类推可以继续增加弱学习器以提高性能。

和其他boost方法一样,梯度提升方法也是通过迭代的方法联合弱”学习者”联合形成一个强学习者。

2.1 算法思想

2.2 算法实现

1)初始化模型函数

2)For m = 1 to M:

使用损失函数的负梯度在当前模型 Fm-1(x)上的值近似代替残差:

使用基学习器 h(x)拟合近似的残差值:

计算最优的ɤ:

3)更新模型 :

4)返回Fm(x)

2.3 残差与负梯度

 

 3 终极组合GBR

GBR就是弱学习器是回归算法。

常见的回归算法:

线性回归(Linear Regression

逻辑回归(Logistic Regression

多项式回归(Polynomial Regression

逐步回归(Stepwise Regression

岭回归(Ridge Regression

套索回归(Lasso Regression

弹性回归(ElasticNet Regression

其他GB算法:

GBRT (Gradient BoostRegression Tree)

梯度提升回归树

GBDT (Gradient BoostDecision Tree)

梯度提升决策树

### 梯度提升回归原理 梯度提升回归(Gradient Boosting Regression, GBR)属于一种集成学习技术,旨在通过组合多个弱预测模型形成更强大的整体预测能力。该过程始于初始化阶段,在此期间通常设定一个简单的初始预测值作为起点[^1]。 随后进入迭代优化环节,每次迭代都会引入一个新的弱学习器——通常是决策树形式,专注于修正现有集合体所犯错误的方向前进。具体来说,新加入的学习器被训练成去拟合之前所有成员共同作用下产生的残差而非原始目标变量本身;这实际上意味着它试图捕捉并弥补当前模型未能很好解释的数据模式部分[^3]。 这种机制允许GBR逐步精细化其对于数据分布的理解,并最终达到较高的泛化性能水平。值得注意的是,为了防止过拟合并保持良好的推广特性,实践中会对单棵树的最大深度等超参数加以控制[^2]。 ```python from sklearn.datasets import make_regression from sklearn.model_selection import train_test_split from sklearn.ensemble import GradientBoostingRegressor import numpy as np # 创建模拟数据集 X, y = make_regression(n_samples=1000, n_features=20, noise=0.1) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) # 构建梯度提升回归模型 gbr = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42) gbr.fit(X_train, y_train) # 预测与评估 predictions = gbr.predict(X_test) mse = np.mean((predictions - y_test)**2) print(f'Mean Squared Error on Test Set: {mse}') ``` 上述代码展示了如何利用`scikit-learn`库快速搭建起一个基本的GBR实例来进行数值型特征上的回归分析任务。这里设置了三个主要参数:估计器数量(`n_estimators`)、学习率(`learning_rate`)以及最大树深(`max_depth`)来调节模型复杂程度及其适应速度。 ### 应用场景 GBR广泛应用于各种领域内的连续值预测问题之中,比如金融风险评估、房价预估或是电力负荷预报等方面。由于具备较强的表达能力和灵活性,即使面对复杂的非线性关系也能给出较为精确的结果。此外,借助于诸如交叉验证这样的工具还可以进一步调优模型表现,确保最佳的应用效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值