机器学习高斯混合模型(中篇):聚类求解

本文深入探讨高斯混合模型(GMM)的聚类求解过程。通过最大似然估计求解单簇高斯分布的参数,并介绍在多个簇情况下的贡献系数计算方法,迭代更新直至参数收敛,最终确定每个样本的簇归属。
摘要由CSDN通过智能技术生成

请点击上面公众号,免费订阅。 

《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来!


01

回顾

昨天,介绍了高斯混合模型(GMM)的一些有意思的小例子,说到高斯混合能预测出每个样本点属于每个簇的得分值,这个具有非常重要的意义,大家想了解这篇推送的,请参考:

机器学习高斯混合模型:聚类原理分析(前篇)



02

GMM求解思路

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值