基于单一累积期权的delta对冲回测系统

一、模型思想

首先我们先弄清楚累计期权是指有多个交割日的期权,对于存续期为1个月的每日观察的累计期权而言,每个交易日都必须进行一次期权的行权,客户可能会产生亏损或收益也可能既不亏损也没收益。一个月下来的总的收益就是每一个交易日期权亏损的总和,并且在期权方面客户和金融机构是一个零和博弈,客户产生的收益即为金融机构的亏损,客户的亏损就是金融机构的收益。那么金融机构可以卖一个累计期权给客户的同时,对标的物进行一个反向操作,就可以进行实现delta对冲。

该模型是基于单一累计期权,进行一个月的模拟对冲,对未来可能出现的每天的价格进行预测,并且模拟次数达到一万次,查看对单一障碍期权做对冲可以实现的收益和收益率。理论上,当模拟次数足够多并且资产价格预测是服从随机游走时,对该期权进行对冲交易的收益的均值应该在0附近,收益率也几乎为0,也就是说正常情况下,100%的(不留敞口的)delta对冲是无法获得超额收益的。

此外,该模型也致力于预测当标的物价格的真实波动率变化时会怎样影响对冲收益和收益率。因为对一个月的标的物价格进行模拟,一共模拟了一万次,每一次模拟都要在服从随机游走的前提下生成22个资产价格(假设一个月有22个交易日)。那么一万次模拟的标的物价格数据就有各种各样不同的资产价格的真实波动率,那么我们统计出波动率在不同的区间,我们去做对冲可以实现怎样的收益和收益率?

二、代码实现

import numpy as np
from scipy.stats import norm
import pandas as pd
from tqdm import tqdm
def barrier_option_price(s, x, r, T, q, barrier, sigma, option_type, is_call):
    """
    使用Black-Scholes模型计算障碍期权的价格。

    参数:
        s: float, 标的资产当前价格
        x: float, 期权的行权价
        r: float, 无风险利率
        T: float, 期权有效期的剩余时间,以年为单位
        q: float, 标的资产的连续红利收益率
        barrier: float, 期权的障碍水平
        sigma: float, 标的资产的波动率
        option_type: str, 期权类型(例如:"UpAndIn"、"UpAndOut"、"DownAndIn"、"DownAndOut")
        is_call: bool, True表示看涨期权,False表示看跌期权

    返回:
        float, 障碍期权的价格
    """

    def rubin_A(pv_S, x1, pv_X, Sig_Root_T, Phi):
        return (Phi * (pv_S * norm.cdf(Phi * x1) - pv_X * norm.cdf(Phi * (x1 - Sig_Root_T))))

    def rubin_B(pv_S, pv_X, barrier, lambda0, Y, Sig_Root_T, Phi, eta):
        lambda0 = min(lambda0, 500)  # 确保lambda不超过500,避免数值不稳定
        term1 = pv_S * (barrier ** (2 * lambda0)) * norm.cdf(eta * Y)
        term2 = pv_X * (barrier ** (2 * lambda0 - 2)) * norm.cdf(eta * (Y - Sig_Root_T))
        return (Phi * (term1 - term2))
    
    # 计算中间变量
    pv_X = x * np.exp(-r * T)
    pv_S = s * np.exp(-q * T)
    if T <= 0:                 # 检验剩余时间大于0
        T = 0.00001
    Sig_Root_T = sigma * np.sqrt(T)
    
    D1 = np.log(pv_S / pv_X) / Sig_Root_T + 0.5 * Sig_Root_T
    D2 = D1 - Sig_Root_T
    mu = r - q - 0.5 * sigma * sigma 
    lambda0 = 1 + (mu / (sigma * sigma))
    x1 = np.log(s / barrier) / Sig_Root_T + lambda0 * Sig_Root_T
    Y = np.log((barrier**2/(s * x))) / Sig_Root_T +lambda0 * Sig_Root_T
    y1 = np.log(barrier / s) / Sig_Root_T + lambda0 * Sig_Root_T
    
    # 对期权进行分类分类顺序:
    #1、是否看涨 
    #2、障碍价格是否大于执行价 
    #3、期权类型(向上敲入、向上敲出、向下敲入、向下敲出)
    #4、标的物初始价格s是否大于障碍价格
    
    price = 999  # 设置初始变量记录barrier_price
    
    if is_call:        
        if (barrier >= x):
            if option_type == "UpAndIn":
                if s < barrier:
                    price = rubin_A(pv_S, x1, pv_X, Sig_Root_T, 1) - rubin_B(pv_S, pv_X, barrier / s, lambda0, Y, Sig_Root_T, 1, -1) + rubin_B(pv_S, pv_X, barrier / s, lambda0, y1, Sig_Root_T, 1, -1)
                else:
                    price = rubin_A(pv_S, D1, pv_X, Sig_Root_T, 1)
            elif option_type == "UpAndOut":
                if s < barrier:
   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值