model.to(device)无法将自定义层的tensor转移到指定设备

有时在model内自定义的模块或参数无法被model.to(device)正确转移到指定设备。如果仅在CPU上跑是没问题的,但如果在GPU上跑,其余部分参数被转移到了GPU,这部分无法正确转移的参数却存放在CPU,就会报错。

可以考虑以下几种解决办法:

1、使用nn.ModuleList()而不是python的内建List来存放多个模块

例如下面自定义的Module,如果将nn.ModuleList去掉(仅使用列表生成式得到多个Linear层),则在使用module.to(device)时,这些层的parameter无法被正确转移到指定设备。

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])

    def forward(self, x):
        # ModuleList can act as an iterable, or be indexed using ints
        for i, l in enumerate(self.linears):
            x = self.linears[i // 2](x) + l(x)
        return x

2、使用nn.Parameter()

这篇论文提出了解决多任务学习的不同Loss权重难以确定的问题的方法,参考GitHub的tensorflow实现,可以得到pytorch的实现如下。这个例子中的两个learnable的参数sigmas,如果不使用nn.Parameter(),仅使用torch.rand(..., requires_grad=True),则该tensor无法被model.to(device)正确转移到对应设备。

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.sigmas = nn.Parameter((1 - 0.2) * torch.rand(2) + 0.2, requires_grad=True)

    def get_multi_task_loss(self, loss1, loss2):
        factor1 = torch.div(1.0, torch.mul(2.0, self.sigmas[0]))
        factor2 = torch.div(1.0, torch.mul(2.0, self.sigmas[1]))
        loss = torch.add(torch.mul(factor1, loss1), torch.log(self.sigmas[0]))
        loss = torch.add(loss, torch.add(torch.mul(factor2, loss2), torch.log(self.sigmas[1])))
        return loss

3、使用register_buffer()

如果想把tensor转移到GPU中,但这些tensor又不需要更新,所以不想将其设为Parameter,则可以考虑使用register_buffer()。下面的例子中,使用self.k = torch.zeros(k)则无法使kmodel.to(device)转移到GPU中。(PS:我觉得使用nn.Parameter()传入requires_grad=False也一样吧)

class MyModule(nn.Module):
    def __init__(self, k):
        super(MyModule, self).__init__()
        self.register_buffer('k', torch.zeros(k))
        # self.k = torch.zeros(k)
    def forward(self):
            ...
            # 这里使用 self.k 即可

参考资料

[1] Why model.to(device) wouldn’t put tensors on a custom layer to the same device?

[2] https://github.com/ranandalon/mtl

[3] Pytorch学习(十九)— 模型中buffer的使用

  • 8
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
这段程序是一个计算图像数据的显著性图并保存的过程。下面是对程序的详细解释: 1. 导入必要的库: ```python import torch import torchvision.datasets as datasets import torchvision.transforms as transforms from models import vgg11_bn from fullgrad import FullGrad, FullGradSimple from utils import NormalizeInverse, save_saliency_map import os ``` 2. 定义数据集和数据加载器: ```python dataset = 'image/' sampler_loader = torch.utils.data.DataLoader( datasets.ImageFolder(dataset, transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]) ]))) ``` 这里使用了`datasets.ImageFolder`来加载数据集,`transform`参数指定了对图像进行的预处理操作,包括将图像大小调整为224x224,转换为张量和归一化。 3. 定义反归一化操作: ```python unnormalize = NormalizeInverse(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]) ``` `NormalizeInverse`是一个自定义的类,用于将经过归一化处理的张量反转回原始图像。 4. 检查设备是否支持CUDA并定义模型: ```python device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = vgg11_bn(pretrained = True) model = model.to(device) ``` 这里使用`torch.cuda.is_available()`来检查设备是否支持CUDA,并将模型移动到相应的设备(GPU或CPU)。 5. 定义FullGrad和Simple FullGrad对象: ```python fullgrad = FullGrad(model) simple_fullgrad = FullGradSimple(model) ``` `FullGrad`和`FullGradSimple`是自定义的类,用于计算图像数据的显著性图。 6. 定义结果保存路径: ```python save_path = 'result' if os.path.isdir(save_path): os.mkdir(save_path) ``` 如果保存路径不存在,则创建一个新的。 7. 定义计算显著性图并保存的函数: ```python def compute_saliency_and_save(): for idx, (data, target) in enumerate(sampler_loader): data, target = data.to(device).requires_grad_(), target.to(device) cam = fullgrad.fullgrad(data) cam_simple = simple_fullgrad.fullgrad(data) for i in range(data.size(0)): filename = save_path + str((idx + 1) * (i+1)) filename_simple = filename + "_simple" image = unnormalize(data[i,:,:,:].cpu()) save_saliency_map(image, cam[i,:,:,:], filename + ".jpg") save_saliency_map(image, cam_simple[i,:,:,:], filename_simple + ".jpg") ``` 这个函数会遍历数据加载器中的每个数据,将其移动到设备上,并计算其对应的显著性图。然后,将图像、显著性图和保存路径传递给`save_saliency_map`函数以保存显著性图。 8. 主函数: ```python if __name__ == "__main__": compute_saliency_and_save() ``` 当脚本被直接执行时,会调用`compute_saliency_and_save`函数来计算和保存显著性图。 总结:这段程序用于计算图像数据的显著性图并保存,它使用了预训练的VGG-11模型和FullGrad算法。程序首先加载数据集并进行预处理,然后将模型移动到合适的设备上。接下来,使用FullGrad和Simple FullGrad算法计算每个图像的显著性图,并将结果保存到指定路径下。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值