论文:Noise2Noise
Github:第三方复现Noise2Noise
引言
用深度学习方法进行图像去噪的时候,通常需要大量的训练图像样本对,即带有噪声的图片和去噪后的图片,可是去噪后的图片往往很难获得,比如在摄影中,需要长曝光才能获得无噪声图片。在MRI图像中,获取无噪声图片则更加难。
这篇论文的作者就提出了一种不需要无噪声图片作为标签的去噪方法。方法非常有意思,实现起来也很简单。那就是:输入输出都是带有噪声的图片(噪声是人工加入的,0均值,高斯噪声),进行训练。
初次看的时候,直接看的源代码,感觉有点难以置信,这也行?有一点,突破认知极限了。咋一看,以有噪声的图像作为CNN的标签,怎么可能会有效呢?
核心思路
我们先思考一个问题,使用:噪声图像-噪声图像样本对训练一个CNN会怎么样?