不需要干净样本的去噪方法:Noise2Noise

Noise2Noise是一种无需干净样本的图像去噪方法,通过使用带有噪声的图像作为输入和输出进行训练。当样本数量足够时,CNN能学习到图像本身,而非噪声模式。理论推导和实验表明,这种方法在各种噪声类型下效果接近最优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:Noise2Noise
Github:第三方复现Noise2Noise

引言

用深度学习方法进行图像去噪的时候,通常需要大量的训练图像样本对,即带有噪声的图片和去噪后的图片,可是去噪后的图片往往很难获得,比如在摄影中,需要长曝光才能获得无噪声图片。在MRI图像中,获取无噪声图片则更加难。
这篇论文的作者就提出了一种不需要无噪声图片作为标签的去噪方法。方法非常有意思,实现起来也很简单。那就是:输入输出都是带有噪声的图片(噪声是人工加入的,0均值,高斯噪声),进行训练。
初次看的时候,直接看的源代码,感觉有点难以置信,这也行?有一点,突破认知极限了。咋一看,以有噪声的图像作为CNN的标签,怎么可能会有效呢?

核心思路

我们先思考一个问题,使用:噪声图像-噪声图像样本对训练一个CNN会怎么样?


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值