腾讯的Sora来了!腾讯PCG ARC实验室推出Mira(Mini-Sora):迈向Sora长视频生成的一小步

腾讯PCG ARC实验室推出Mira(Mini-Sora):迈向类似 Sora 的长视频生成的一小步。目前Mira还在非常早期的阶段,和Sora在许多关键领域还存在显着差距。

Mira项目是研究和完善类似Sora的轻量级T2V框架的整个数据模型训练流程,并初步展示上述 Sora 特性。

相关链接

项目主页:https://mira-space.github.io/

代码链接:github.com/mira-space/Mira

数据地址:https://github.com/mira-space/MiraData

项目介绍

我们推出 Mira (Mini-Sora),这是对 Sora 风格的高质量、长时间视频生成领域的初步尝试。 Mira 在几个关键方面从现有的文本到视频 (T2V) 生成框架中脱颖而出:

  1. 扩展序列长度:虽然大多数框架仅限于生成短视频(2 秒/16 帧),但 Mira 的设计目的是生成更长的视频序列,可能持续 10 秒、20 秒或更长时间。

  2. 增强动态:Mira 能够创建具有丰富动态和复杂动作的视频,使其有别于当前视频生成技术的静态输出。

  3. 强大的 3D 一致性:尽管存在复杂的动态和对象交互,Mira 仍可确保整个视频中保留对象的 3D 完整性,避免明显的扭曲。

请注意,我们在 Mira 上的工作正处于实验阶段。 Mira 和 Sora 在许多关键领域存在显着差距:

  1. 交互式对象和环境:Sora 支持生成对象和周围环境进行动态交互的视频,增加了一层复杂性和真实感。

  2. 持续的对象一致性:Sora 保持一致的对象形状,即使它们暂时退出并重新进入框架,确保连续性和连贯性。

Mira 项目是我们努力研究和完善类似 Sora 的轻量级 T2V 框架的整个数据模型训练流程,并初步展示上述 Sora 特性。我们的目标是促进创新并使内容创作领域民主化,为更易于使用和更先进的视频生成工具铺平道路。

我们目前正在对 Mini-Sora 进行初步实验。我们这个项目的主要目标不是完全重现 Sora,而是探索 Sora 框架内的特定关键组件,并与社区分享我们的发现。

MiraDiT

MiraData 是一个具有长时长和结构化字幕 的大规模视频数据集。它专为长视频生成任务而设计。

Mira Data

视频数据集在视频生成(如sora)中起着至关重要的作用。然而,当涉及到处理长视频序列和捕捉镜头转换时,现有文本视频数据集往往不足。为了解决这些限制,我们引入了MiraData(Mini-Sora Data),这是一个专门为长视频生成任务设计的大规模视频数据集。

Mira Data的主要特点

  1. 视频时长长:与以前的数据集不同,视频剪辑通常很短(通常小于 6 秒),MiraData 专注于时长在 1 到 2 分钟之间的未剪辑视频片段。这种延长的持续时间允许对视频内容进行更全面的建模。

  2. 结构化字幕:MiraData 中的每个视频都附有结构化字幕。这些标题从不同角度提供了详细描述,增强了数据集的丰富性。字幕平均长度为349字,保证了视频内容的全面呈现。

当前状态

在此初始版本,Mira Data包括两个场景:

  • 游戏:与游戏体验相关的视频。

  • 城市/风景探索:捕捉城市或风景的视频。

MiraData仍处于早期阶段,我们将在不久的将来发布更多场景并提高数据集的质量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIGC Studio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值