1. 简单约瑟夫环问题:
N个人,编号从1~N围成一圈,输入一个数T,从1号开始报数,报到T的人出圈;下一人又从1开始报数,下一个报到T的人出圈,输出出圈顺序。
考虑问题:
报到T的人出圈,怎么表示出圈?要么删除对应的标号,其他的标号前移(如果是数组结构,要依次移动元素,效率低;如果是链表,删除结点也比较麻烦);要么设定状态标志位(声明一个状态数组status[N],status[i] ==0时表示未出圈,出圈时将对应第i号人的status置为出圈的次数;即status[i]=count)
解决了表示出圈的问题,那如何出圈?如果报数T大于总人数N时,需要取余才能将报号的范围限制在标号为0~N-1中。
流程呢?
while(出圈人数<总人数)
{
从start下标依次查找status为0的下标(需要保存start下标)
计数
判断计数是否等于T
若计数等于T
出圈,更新对应下标的status,出圈人数加1
}
2. 复杂约瑟夫环
1~N个人构成一圈,每个人手中有个号码,读入一个数T,从第一个人开始报数,报到T的人出圈;下一个人接着从1报数,报到出圈人手里的号码的人出圈,依次进行。
与简单约瑟夫环不同的是T变了;每出圈一个,要更新对应的T;
3. 如果要求最后出圈的人的编号,还有简单的方法:
引用:http://www.cnblogs.com/EricYang/archive/2009/09/04/1560478.html
无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。
为了讨论方便,先把问题稍微改变一下,并不影响原意:
问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。
我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
k k+1 k+2 ... n-2, n-1, 0, 1, 2, ... k-2并且从k开始报0。
现在我们把他们的编号做一下转换:
k --> 0
k+1 --> 1
k+2 --> 2
...
...
k-2 --> n-2
k-1 --> n-1
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k)%n
如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:
令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]
递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i; (i>1)
有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1
由于是逐级递推,不需要保存每个f[i],程序也是异常简单: