值迭代、策略迭代

值函数

策略: 状态s到动作a的映射: π:SA
值函数:值函数都是对应于特定的策略的,即 Vπ
对于策略 π ,状态s的值函数:

Vπ(s)=E[R(s0)+γR(s1)+γ2R(s2)+...|s0=s,π].

也可表示为Bellman形式,是一种迭代思想:

Vπ(s)=R(s)+γsSPsπ(s)(s)Vπ(s).

其中 Psπ(s)(s) 表示对应于策略 π 的状态转移概率,即从s转到s’的概率

最优的值函数

对于某状态s的最优值函数用 V(s)
定义如下:
V(s)=maxπVπ(s).
由上式可知,最优的策略 π 对应最优的值函数、

写成Bellman方程就是:

V(s)=R(s)+maxaAγsSPsa(s)V(s).

最优的策略

π 表示
在某一状态s下的最优策略定义如下:

π(s)=argmaxaAsSPsa(s)V(s).

值迭代

这里写图片描述

策略迭代

这里写图片描述

其中 V:=Vπ 的计算可根据第一节值函数的定义计算

好的,我会尽力回答你的问题。强化学习是通过与环境交互来学习最优行为的一种机器学习方法。在强化学习中,最优控制问题可以通过迭代策略迭代来解决。下面是我给出的一些思路和伪代码。 迭代: 1. 初始化状态函数V(s)和误差阈epsilon。 2. 对于每一个状态s,执行以下操作: 1) 初始化最大价max_value为负无穷大。 2) 对于每一个可能的行动a,执行以下操作: a) 计算行动a后的状态s'的价V(s')。 b) 计算行动a的总收益R(s,a,s')。 c) 计算行动a的价Q(s,a)=R(s,a,s')+gamma*V(s')。 d) 如果Q(s,a)大于max_value,则更新max_value和s的最优行动a*。 3) 如果max_value-V(s)小于epsilon,则停止迭代。 4) 更新V(s)=max_value。 3. 返回状态函数V(s)和最优策略pi(s)=a*。 策略迭代: 1. 初始化策略pi(s)和误差阈epsilon。 2. 对于每一个状态s,执行以下操作: 1) 初始化最大价max_value为负无穷大。 2) 对于每一个可能的行动a,执行以下操作: a) 计算行动a后的状态s'的价V(s')。 b) 计算行动a的总收益R(s,a,s')+gamma*V(s')。 c) 计算行动a的价Q(s,a)=R(s,a,s')+gamma*V(s')。 d) 如果Q(s,a)大于max_value,则更新max_value和s的最优行动a*。 3) 更新策略pi(s)=a*。 3. 如果pi(s)不再改变,则停止迭代。 4. 返回策略pi(s)和状态函数V(s)。 伪代码: 迭代: ``` function [V, pi] = value_iteration(S, A, P, R, gamma, epsilon) % S: 状态集合 % A: 行动集合 % P: 状态转移概率矩阵 % R: 奖励矩阵 % gamma: 折扣因子 % epsilon: 误差阈 % 初始化状态函数V V = zeros(size(S)); while true delta = 0; for s = S max_value = -inf; for a = A value = 0; for sp = S value = value + P(s,a,sp)*(R(s,a,sp)+gamma*V(sp)); end if value > max_value max_value = value; pi(s) = a; end end delta = max(delta, abs(max_value-V(s))); V(s) = max_value; end if delta < epsilon break; end end end ``` 策略迭代: ``` function [V, pi] = policy_iteration(S, A, P, R, gamma, epsilon) % S: 状态集合 % A: 行动集合 % P: 状态转移概率矩阵 % R: 奖励矩阵 % gamma: 折扣因子 % epsilon: 误差阈 % 初始化策略pi和状态函数V pi = ones(size(S)); V = zeros(size(S)); while true % 策略评估 while true delta = 0; for s = S v = 0; for sp = S v = v + P(s,pi(s),sp)*(R(s,pi(s),sp)+gamma*V(sp)); end delta = max(delta, abs(v-V(s))); V(s) = v; end if delta < epsilon break; end end % 策略改进 policy_stable = true; for s = S old_action = pi(s); max_value = -inf; for a = A value = 0; for sp = S value = value + P(s,a,sp)*(R(s,a,sp)+gamma*V(sp)); end if value > max_value max_value = value; pi(s) = a; end end if old_action ~= pi(s) policy_stable = false; end end if policy_stable break; end end end ``` 以上就是使用Matlab编程实现强化学习迭代策略迭代最优控制程序的思路和伪代码。需要注意的是,实际编写代码时还需要考虑输入参数的格式和一些边界情况的处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值