支持向量机,朴素贝叶斯,k近邻(分类) python实现

本文详细介绍了如何使用Python实现支持向量机、朴素贝叶斯和k近邻算法进行分类。分别通过手写体数字图像识别、新闻文本分类和Iris数据集实验,展示每个模型的步骤和性能评估。

(二) 支持向量机,朴素贝叶斯, k k k 近邻(分类) python实现

1、 支持向量机(分类)

step1:手写体数据读取代码样例
# 从sklearn.datasets里导入手写体数字加载器。
from sklearn.datasets import load_digits
# 从通过数据加载器获得手写体数字的数码图像数据并储存在digits变量中。
digits = load_digits()
# 检视数据规模和特征维度。
digits.data.shape

(1797L, 64L)
step2:手写体数据分割代码样例
# 从sklearn.cross_validation中导入train_test_split用于数据分割。
from sklearn.cross_validation import train_test_split 
#python3中 cross_validation 替换为model_selection

# 随机选取75%的数据作为训练样本;其余25%的数据作为测试样本。
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, 
test_size=0.25, random_state=33)

y_train.shape
(1347L,)
y_test.shape
(450L,)
step3:使用支持向量机(分类)对手写体数字图像进行识别
# 从sklearn.preprocessing里导入数据标准化模块。
from sklearn.preprocessing import StandardScaler

# 从sklearn.svm里导入基于线性假设的支持向量机分类器LinearSVC。
from sklearn.svm import LinearSVC

# 从仍然需要对训练和测试的特征数据进行标准化。
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)

# 初始化线性假设的支持向量机分类器LinearSVC。
lsvc = LinearSVC()
#进行模型训练
lsvc.fit(X_train, y_train)
# 利用训练好的模型对测试样本的数字类别进行预测,预测结果储存在变量y_predict中。
y_predict = lsvc.predict(X_test)

step4:支持向量机(分类)对手写体数字图像进行识别能力的评估
# 使用模型自带的评估函数进行准确性测评。python3中 print()
print 'The Accuracy of Linear SVC is', lsvc.score(X_test, y_test)
The Accuracy of Linear SVC is 0.953333333333
# 依然使用sklearn.metrics里面的classification_report模块对预测结果做更加详细的分析。
from sklearn.metrics import classification_report
print classification_report(y_test, y_predict, target_names=digits.target_names.astype(str))

             precision    recall  f1-score   support

          0       0.92      1.00      0.96        35
          1       0.96      0.98      0.97        54
          2       0.98      1.00      0.99        44
          3       0.93      0.93      0.93        46
          4       0.97      1.00      0.99        35
          5       0.94      0.94      0.94        48
          6       0.96      0.98      0.97        51
          7       0.92      1.00      0.96        35
          8       0.98      0.84      0.91        58
          9       0.95      0.91      0.93        44

avg / total       0.95      0.95      0.95       450

2、朴素贝叶斯

step1:读取20类新闻文本的数据细节
# 从sklearn.datasets里导入新闻数据抓取器fetch_20newsgroups。
from sklearn.datasets import fetch_20newsgroups
# 与之前预存的数据不同,fe
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值