矩阵和行列式

其他相关内容

线性方程组和矩阵
矩阵和行列式
向量组及其线性组合
向量组线性相关性
特征值和特征向量
相似矩阵和相似对角化
二次型
番外
向量空间
矩阵A可逆的和相似的一些性质
常见向量的运算
矩阵向量求导
矩阵对角化相关推导
伴随矩阵及其运算
关于特征值和特征向量的一些公式推导

:只有方阵才有行列式

全排列

n n n个不同元素的排成一列,叫做这 n n n个元素的全排列(简称:排列)
n n n个不同元素的所有排列的种类数,通常使用 P n P_n Pn表示
P n = n ! P_n=n! Pn=n!

逆序

对于 n n n个不同的元素,先规定各个元素之间有一个标准次序(例如 n n n个自然数,可以规定为由大到小的标准次序),
于是在这 n n n个元素的任一排列中,当某一对元素先后次序标准次序不同的时候,就说他构成一个逆序
一个排列中的所有逆序的总数叫做这个排列的逆序数
逆序数为奇数的排列叫做奇排列
逆序数为偶数的排列叫做偶排列

对换

在排列中将任意两个元素对调,其余元素不动,这种做出新排列的手续叫做对换
如果是两个向量的元素对换,叫做相邻对换
定理
一个排列中任意两个元素对换,排列改变奇偶性
推论
奇排列对换成标准排列的次数为奇数偶排列对换成标准排列的次数为偶数

n n n 阶行列式( n × n n\times n n×n

D = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ D=\left|\begin{matrix}a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\\end{matrix}\right| D=a11a21an1a12a22an2a1na2nann
简记作 det ⁡ ( a i j ) \det(a_{ij}) det(aij),其中 a i j a_{ij} aij为行列式 D D D ( i , j ) (i,j) (i,j)元。

转置行列式

D T = ∣ a 11 a 21 ⋯ a n 1 a 12 a 22 ⋯ a n 2 ⋮ ⋮ ⋱ ⋮ a 1 n a 2 n ⋯ a n n ∣ D^T=\left|\begin{matrix}a_{11}&a_{21}&\cdots&a_{n1}\\ a_{12}&a_{22}&\cdots&a_{n2}\\ \vdots&\vdots&\ddots&\vdots\\ a_{1n}&a_{2n}&\cdots&a_{nn}\\\end{matrix}\right| DT=a11a12a1na21a22a2nan1an2ann
行列式 D T D^T DT称为行列式 D D D转置行列式

行列式相关性质

性质1:
行列式与它的转置行列式相等
性质2:
对换行列式的两行(列),行列式变号
推论:
如果行列式有两行(列)完全相同,则此行列式等于零
性质3:
行列式的某一行(列)中所有元素都同乘一个数 k k k,等于用数 k k k乘此行列式
记作 r i × k r_i\times k ri×k或者 c i × k c_i\times k ci×k
推论:
行列式中某一行(列)的所有元素都的公因子可以提到行列式记号的外面
性质4:
行列式中如果有两行(列)元素成比例,则此行列式等于零
性质5:
若行列式的某一行(列)的元素都是两数之和,例如第 i i i行的元素都是两数之和:
D = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a i 1 + a i 1 ′ a i 2 + a i 2 ′ ⋯ a i n + a i n ′ ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ D=\left|\begin{matrix}a_{11}&a_{12}&\cdots&a_{1n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{i1}+a^{'}_{i1}&a_{i2}+a^{'}_{i2}&\cdots&a_{in}+a^{'}_{in}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\\end{matrix}\right| D=a11ai1+ai1an1a12ai2+ai2an2a1nain+ainann
D D D等于下面两个行列式之和:
D = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ + ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a i 1 ′ a i 2 ′ ⋯ a i n ′ ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ D=\left|\begin{matrix}a_{11}&a_{12}&\cdots&a_{1n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{i1}&a_{i2}&\cdots&a_{in}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\\end{matrix}\right|+\left|\begin{matrix}a_{11}&a_{12}&\cdots&a_{1n}\\ \vdots&\vdots&\ddots&\vdots\\ a^{'}_{i1}&a^{'}_{i2}&\cdots&a^{'}_{in}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\\end{matrix}\right| D=a11ai1an1a12ai2an2a1nainann+a11ai1an1a12ai2an2a1nainann
性质6:
把行列式的某一行(列)的各个元素乘同一个数然后加到另一行(列),对应元素上,行列式的值不变
∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋱ ⋮ a j 1 a j 2 ⋯ a j n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋱ ⋮ a j 1 + k a i 1 a j 2 + k a i 2 ⋯ a j n + k a i n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ ( i ≠ j ) \left|\begin{matrix}a_{11}&a_{12}&\cdots&a_{1n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{i1}&a_{i2}&\cdots&a_{in}\\ \vdots&\vdots&\ddots&\vdots\\ a_{j1}&a_{j2}&\cdots&a_{jn}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\\end{matrix}\right|=\left|\begin{matrix}a_{11}&a_{12}&\cdots&a_{1n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{i1}&a_{i2}&\cdots&a_{in}\\ \vdots&\vdots&\ddots&\vdots\\ a_{j1}+ka_{i1}&a_{j2}+ka_{i2}&\cdots&a_{jn}+ka_{in}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\\end{matrix}\right|(i\neq j) a11ai1aj1an1a12ai2aj2an2a1nainajnann=a11ai1aj1+kai1an1a12ai2aj2+kai2an2a1nainajn+kainann(i̸=j)

行列式按照行(列)展开

余子式

n n n阶行列式中,把 ( i , j ) (i,j) (i,j) a i j a_{ij} aij所在的 i i i行和第 j j j列划去后,留下来的 n − 1 n-1 n1阶行列式叫做 ( i , j ) (i,j) (i,j)元的 a i j a_{ij} aij余子式,记作 M i j M_{ij} Mij;记:
A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij
A i j A_{ij} Aij叫做 ( i , j ) (i,j) (i,j) a i j a_{ij} aij代数余子式
引理
一个 n n n阶行列式,如果其中第 i i i行所有元素除了 ( i , j ) (i,j) (i,j) a i j a_{ij} aij外都为零,那么这个行列式等于 a i j a_{ij} aij与它的代数余子式的乘积,即:
D = a i j A i j D=a_{ij}A_{ij} D=aijAij

行列式展开法则

定理
行列式等于它的任意一行(列)的各个元素与其对应的代数余子式乘积之和,即:
D = a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n ( i = 1 , 2 , ⋯   , n ) D=a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots+a_{in}A_{in}\qquad (i=1,2,\cdots,n) D=ai1Ai1+ai2Ai2++ainAin(i=1,2,,n)
或者
D = a 1 j A 1 j + a 2 j A 2 j + ⋯ + a n j A n j ( j = 1 , 2 , ⋯   , n ) D=a_{1j}A_{1j}+a_{2j}A_{2j}+\cdots+a_{nj}A_{nj}\qquad (j=1,2,\cdots,n) D=a1jA1j+a2jA2j++anjAnj(j=1,2,,n)
这个定理就是行列式按行(列)展开法则

范德蒙德行列式

D = ∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋱ ⋮ x 1 n x 2 n ⋯ x n n ∣ = Π n ≥ i > j ≥ 1 ( x i − x j ) D=\left|\begin{matrix} 1&1&\cdots&1\\ x_1&x_2&\cdots&x_n\\ x^2_1&x^2_2&\cdots&x^2_n\\ \vdots&\vdots&\ddots&\vdots\\ x^n_1&x^n_2&\cdots&x^n_n\\\end{matrix}\right|=\Pi{_{n\ge i>j\ge1}}(x_i-x_j) D=1x1x12x1n1x2x22x2n1xnxn2xnn=Πni>j1(xixj)
推论:
行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即:
a i 1 A j 1 + a i 2 A j 2 + ⋯ + a i n A j n = 0 ( i ≠ j ) a_{i1}A_{j1}+a_{i2}A_{j2}+\cdots+a_{in}A_{jn}=0\qquad(i\neq j) ai1Aj1+ai2Aj2++ainAjn=0(i̸=j)
或者
a 1 i A 1 j + a 2 i A 2 j + ⋯ + a n i A n j = 0 ( i ≠ j ) a_{1i}A_{1j}+a_{2i}A_{2j}+\cdots+a_{ni}A_{nj}=0\qquad(i\neq j) a1iA1j+a2iA2j++aniAnj=0(i̸=j)

克拉默法则

含有 n n n个未知数 x 1 , x 2 , … , x n x_1,x_2,\dots,x_n x1,x2,,xn n n n个线性方程的线性方程组
(A) { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b n , \left\{\begin{aligned} &a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ &a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ &\cdots\cdots\\ &a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_n,\\ \end{aligned} \right.\tag{A} a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,am1x1+am2x2++amnxn=bn,(A)
它的解可以用 n n n阶行列式表示,即有
如果线性方程组 ( A ) (A) (A)的系数矩阵 A A A的行列式不等于零,即
∣ A ∣ = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ ≠ 0 |A|=\left|\begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\ \end{matrix}\right|\neq 0 A=a11a21an1a12a22an2a1na2nann̸=0
那么方程组 ( A ) (A) (A)有唯一解
x 1 = ∣ A 1 ∣ ∣ A ∣ , x 2 = ∣ A 2 ∣ ∣ A ∣ , … , x n = ∣ A n ∣ ∣ A ∣ x_1=\dfrac{|A_1|}{|A|},x_2=\dfrac{|A_2|}{|A|},\dots,x_n=\dfrac{|A_n|}{|A|} x1=AA1,x2=AA2,,xn=AAn
其中 A j ( j = 1 , 2 , … , n ) A_j(j=1,2,\dots,n) Aj(j=1,2,,n)是把系数矩阵 A A A j j j的元素用方程右端的常数项代替后得到的 n n n阶矩阵,即:
A j = ( a 11 ⋯ a 1 , j − 1 b 1 a 1 , j + 1 ⋯ a 1 n a 21 ⋯ a 2 , j − 1 b 2 a 2 , j + 1 ⋯ a 2 n ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a n 1 ⋯ a n , j − 1 b n a n , j + 1 ⋯ a n n ) A_j=\begin{pmatrix} a_{11}&\cdots&a_{1,j-1}&b_1&a_{1,j+1}&\cdots&a_{1n}\\ a_{21}&\cdots&a_{2,j-1}&b_2&a_{2,j+1}&\cdots&a_{2n}\\ \vdots&\ddots&\vdots&\vdots&\vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{n,j-1}&b_n&a_{n,j+1}&\cdots&a_{nn}\\ \end{pmatrix} Aj=a11a21an1a1,j1a2,j1an,j1b1b2bna1,j+1a2,j+1an,j+1a1na2nann

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值